Immunology and microbiology: how do they affect social cognition and emotion recognition?

Curr Opin Immunol

Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, Genova, Italy; Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milano, Italy. Electronic address:

Published: August 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Social interactions profoundly influence animals' life. The quality of social interactions and many everyday life decisions are determined by a proper perception, processing and reaction to others' emotions. Notably, alterations in these social processes characterize a number of neurodevelopmental disorders, including autism spectrum disorders and schizophrenia. Increasing evidences support an implication of immune system vulnerability and inflammatory processes in disparate behavioral functions and the aforementioned neurodevelopmental disorders. In this review, we show a possible unifying view on how immune responses, within and outside the brain, and the communication between the immune system and brain responses might influence emotion recognition and related social responses. In particular, we highlight the importance of combining genetics, immunology and microbiology factors in understanding social behaviors. We underline the importance of better disentangling the whole machinery between brain-immune system interactions to better address the complexity of social processes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.coi.2021.05.001DOI Listing

Publication Analysis

Top Keywords

immunology microbiology
8
social interactions
8
social processes
8
neurodevelopmental disorders
8
immune system
8
social
7
microbiology affect
4
affect social
4
social cognition
4
cognition emotion
4

Similar Publications

Impaired muscle regrowth in aging is underpinned by reduced pro-inflammatory macrophage function and subsequently impaired muscle cellular remodeling. Macrophage phenotype is metabolically controlled through TCA intermediate accumulation and activation of HIF1A. We hypothesized that transient hypoxia following disuse in old mice would enhance macrophage metabolic inflammatory function thereby improving muscle cellular remodeling and recovery.

View Article and Find Full Text PDF

Synovial MS4A4A correlates with inflammation and counteracts response to corticosteroids in arthritis.

Proc Natl Acad Sci U S A

September 2025

Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom.

MS4A4A belongs to the MS4A tetraspan protein superfamily and is selectively expressed by the monocyte-macrophage lineage. In this study, we aimed to evaluate the role of MS4A4A+ macrophages in rheumatoid arthritis (RA) pathogenesis and response to treatment. RNA sequencing and immunohistochemistry of synovial samples from either early treatment-naïve or active chronic RA patients showed that MS4A4A expression positively correlated with synovial inflammation.

View Article and Find Full Text PDF

Lymphotoxin β receptor (LTβR/TNFRSF3) signaling plays a crucial role in immune defense. Notably, LTβR-deficient (LTβR) mice exhibit severe defects in innate and adaptive immunity against various pathogens and succumb to infection. Here, we investigated the bone marrow (BM) and peritoneal cavity (PerC) compartments of LTβR mice during infection, demonstrating perturbed B-cell and T-cell subpopulations in the absence of LTβR signaling.

View Article and Find Full Text PDF

Cell death mechanisms play a fundamental role in mycobacterial pathogenesis. We critically reviewed 94 research manuscripts, 44 review articles, and 4 book chapters to analyze important discoveries, background literature, and potential shortcomings in the field. The focus of this review is the pathogen (Mtb) and other Mtb and complex microorganisms.

View Article and Find Full Text PDF

Despite therapeutic advances, multiple myeloma (MM) remains incurable, especially in relapsed/refractory (R/R) cases. B-cell maturation antigen (BCMA) is a key target for novel immunotherapies, including chimeric antigen receptor T-cell (CAR-T) therapies and bispecific T-cell engagers (BiTEs), which vary in efficacy, toxicity, and accessibility. To compare the efficacy and safety of BCMA-directed CAR-T therapies and BiTEs in R/R MM through a systematic review and meta-analysis.

View Article and Find Full Text PDF