Publications by authors named "Zisis Bimpisidis"

Ventral tegmental area (VTA) dopamine (DA) neurons are implicated in reward processing, motivation, reward prediction error, and in substance use disorder. Recent studies have identified distinct neuronal subpopulations within the VTA that can be clustered based on their molecular identity, neurotransmitter profile, physiology, projections and behavioral role. One such subpopulation is characterized by expression of the gene, and projects primarily to the nucleus accumbens medial shell.

View Article and Find Full Text PDF

Social interactions profoundly influence animals' life. The quality of social interactions and many everyday life decisions are determined by a proper perception, processing and reaction to others' emotions. Notably, alterations in these social processes characterize a number of neurodevelopmental disorders, including autism spectrum disorders and schizophrenia.

View Article and Find Full Text PDF

The vesicular monoamine transporter 2 (VMAT2) has a range of functions in the central nervous system, from sequestering toxins to providing conditions for the quantal release of monoaminergic neurotransmitters. Monoamine signaling regulates diverse functions from arousal to mood, movement, and motivation, and dysregulation of VMAT2 function is implicated in various neuropsychiatric diseases. While all monoamine-releasing neurons express the gene, only a subset is positive for the calcium-binding protein Calbindin 2 (Calb2; aka Calretinin, 29 kDa Calbindin).

View Article and Find Full Text PDF

Understanding how neuronal activation leads to specific behavioral output is fundamental for modern neuroscience. Combining optogenetics in rodents with behavioral testing in validated paradigms allows the measurement of behavioral consequences upon stimulation of distinct neurons in real-time with high spatial and temporal selectivity, and thus the establishment of causal relationships between neuronal activation and behavior. Here, we describe a step-by-step protocol for a real-time place preference (RT-PP) paradigm, a modified version of the classical conditioned place preference (CPP) test.

View Article and Find Full Text PDF

Dopamine-glutamate co-release is a unique property of midbrain neurons primarily located in the ventral tegmental area (VTA). Dopamine neurons of the VTA are important for behavioral regulation in response to rewarding substances, including natural rewards and addictive drugs. The impact of glutamate co-release on behaviors regulated by VTA dopamine neurons has been challenging to probe due to lack of selective methodology.

View Article and Find Full Text PDF

Reward-related behavior is complex and its dysfunction correlated with neuropsychiatric illness. Dopamine (DA) neurons of the ventral tegmental area (VTA) have long been associated with different aspects of reward function, but it remains to be disentangled how distinct VTA DA neurons contribute to the full range of behaviors ascribed to the VTA. Here, a recently identified subtype of VTA neurons molecularly defined by NeuroD6 (NEX1M) was addressed.

View Article and Find Full Text PDF
Article Synopsis
  • The gene VGLUT2 in midbrain dopamine neurons allows these neurons to release glutamate in the nucleus accumbens, which may play a role in drug addiction.
  • Conditional deletion of VGLUT2 in developing dopamine neurons leads to changes in how adult mice respond to addictive substances like cocaine and amphetamine.
  • This study shows that VGLUT2 is important for glutamatergic neurotransmission in the nucleus accumbens and highlights its role in the neural mechanisms underlying drug addiction-related changes.
View Article and Find Full Text PDF

Chronic levodopa treatment leads to the appearance of dyskinesia in the majority of Parkinson's disease patients. Neurovascular dysregulation in putaminal and pallidal regions is thought to be an underlying feature of this complication of treatment. We used microPET to study unilaterally lesioned 6-hydroxydopamine rats that developed levodopa-induced abnormal involuntary movements (AIMs) after three weeks of drug treatment.

View Article and Find Full Text PDF

Preclinical imaging of brain activity requires the use of anesthesia. In this study, we have compared the effects of two widely used anesthetics, inhaled isoflurane and ketamine/xylazine cocktail, on cerebral blood flow and metabolism in a rat model of Parkinson's disease and l-DOPA-induced dyskinesia. Specific tracers were used to estimate regional cerebral blood flow (rCBF - [C]-iodoantipyrine) and regional cerebral metabolic rate (rCMR - [C]-2-deoxyglucose) with a highly sensitive autoradiographic method.

View Article and Find Full Text PDF

The ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) of the midbrain are associated with Parkinson's disease (PD), schizophrenia, mood disorders and addiction. Based on the recently unraveled heterogeneity within the VTA and SNc, where glutamate, GABA and co-releasing neurons have been found to co-exist with the classical dopamine neurons, there is a compelling need for identification of gene expression patterns that represent this heterogeneity and that are of value for development of human therapies. Here, several unique gene expression patterns were identified in the mouse midbrain of which NeuroD6 and Grp were expressed within different dopaminergic subpopulations of the VTA, and TrpV1 within a small heterogeneous population.

View Article and Find Full Text PDF

Dissociation of vasomotor and metabolic responses to levodopa has been observed in human subjects with Parkinson's disease (PD) studied with PET and in autoradiograms from 6-hydroxydopamine (6-OHDA) rat. In both species, acute levodopa administration was associated with increases in basal ganglia cerebral blood flow (CBF) with concurrent reductions in cerebral metabolic rate (CMR) for glucose in the same brain regions. In this study, we used a novel dual-tracer microPET technique to measure CBF and CMR levodopa responses in the same animal.

View Article and Find Full Text PDF

The aim of this work was to evaluate the capability of lactoferrin- and antitransferrin-modified long circulating liposomes to deliver the hydrophilic peptide senktide, a selective NK3 receptor agonist unable to cross the blood brain barrier, to central nervous system by using an indirect method based on in vivo microdialysis studies to estimate the responsiveness of nucleus accumbens shell dopamine to senktide. To this purpose, senktide was encapsulated in different targeted and not-targeted stealth liposomes prepared using film hydration method. Formulations were characterized in terms of morphology, size distribution, zeta potential, encapsulation efficiency, and antibody presence on the liposome surface.

View Article and Find Full Text PDF

2-Arachidonoylglycerol (2-AG) is the most potent endogenous ligand of brain cannabinoid CB1 receptors and is synthesized on demand from 2-arachidonate-containing phosphoinositides by the action of diacylglycerol lipase in response to increased intracellular calcium. Several studies indicate that the endocannabinoid (eCB) system is involved in the mechanism of reward and that diverse drugs of abuse increase brain eCB levels. In addition, eCB are self-administered (SA) by squirrel monkeys, and anandamide increases nucleus accumbens (NAc) shell dopamine (DA) in rats.

View Article and Find Full Text PDF

In animal models of Parkinson's disease, striatal overactivation of ERK1/2 via dopamine (DA) D1 receptors is the hallmark of a supersensitive molecular response associated with dyskinetic behaviors. Here we investigate the pathways involved in D1 receptor-dependent ERK1/2 activation using acute striatal slices from rodents with unilateral 6-hydroxydopamine (6-OHDA) lesions. Application of the dopamine D1-like receptor agonist SKF38393 induced ERK1/2 phosphorylation and downstream signaling in the DA-denervated but not the intact striatum.

View Article and Find Full Text PDF

l-DOPA-induced dyskinesia (LID) is a major complication of the pharmacotherapy of Parkinson's disease. Emerging approaches to the treatment of LID include negative modulation of metabotropic glutamate receptor type 5 (mGluR5) and positive modulation of serotonin receptors 5-HT1A/1B. We set out to compare the efficacy of these two approaches in alleviating the dyskinesias induced by either l-DOPA or a D1 receptor agonist.

View Article and Find Full Text PDF

Taste stimuli increase extracellular dopamine (DA) in the nucleus accumbens (NAc) and in the medial prefrontal cortex (mPFC). This effect shows single-trial habituation in NAc shell but not in core or in mPFC. Morphine sensitization abolishes habituation of DA responsiveness in NAc shell but induces it in mPFC.

View Article and Find Full Text PDF

Rationale: Repeated treatment with morphine has been shown to sensitize rats to its stimulant effects on motor activity and mesolimbic dopamine (DA) transmission.

Objectives: The aim of this study is to investigate if morphine sensitization is associated to changes in the behavioral reactions to appetitive and aversive taste stimuli and in the response of in vivo DA transmission in the nucleus accumbens (NAc) shell and core and medial prefrontal cortex (PFCX) to the same stimuli.

Methods: Rats were administered twice a day for three consecutive days with increasing doses of morphine [10, 20, and 40 mg/kg, subcutaneously (sc)] or with saline.

View Article and Find Full Text PDF