Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The circadian clock is the broadly conserved, protein-based, timekeeping mechanism that synchronizes biology to the Earth's 24-h light-dark cycle. Studies of the mechanisms of circadian timekeeping have placed great focus on the role that individual protein-protein interactions play in the creation of the timekeeping loop. However, research has shown that clock proteins most commonly act as part of large macromolecular protein complexes to facilitate circadian control over physiology. The formation of these complexes has led to the large-scale study of the proteins that comprise these complexes, termed here "circadian interactomics." Circadian interactomic studies of the macromolecular protein complexes that comprise the circadian clock have uncovered many basic principles of circadian timekeeping as well as mechanisms of circadian control over cellular physiology. In this review, we examine the wealth of knowledge accumulated using circadian interactomics approaches to investigate the macromolecular complexes of the core circadian clock, including insights into the core mechanisms that impart circadian timing and the clock's regulation of many physiological processes. We examine data acquired from the investigation of the macromolecular complexes centered on both the activating and repressing arm of the circadian clock and from many circadian model organisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8830082PMC
http://dx.doi.org/10.1177/07487304211014622DOI Listing

Publication Analysis

Top Keywords

circadian clock
16
circadian
14
circadian timekeeping
12
circadian interactomics
8
protein-protein interactions
8
mechanisms circadian
8
macromolecular protein
8
protein complexes
8
circadian control
8
macromolecular complexes
8

Similar Publications

The effects of circadian rhythm on reproductive functions.

Zygote

September 2025

International School of Medicine, Istanbul Medipol University, Istanbul, Turkey.

Circadian rhythms are intrinsic, endogenously generated cycles that regulate various physiological processes, including reproductive functions. These rhythms are orchestrated by a network of core clock genes and are influenced by external environmental cues, primarily the light-dark cycle. Disruptions in circadian rhythms can have profound effects on fertility in both males and females, impacting processes such as the estrous cycle, ovulation, sperm production, implantation and pregnancy maintenance.

View Article and Find Full Text PDF

This study investigates the interaction between circadian rhythms and lipid metabolism disruptions in the context of obesity. Obesity is known to interfere with daily rhythmicity, a crucial process for maintaining brain homeostasis. To better understand this relationship, we analyzed transcriptional data from mice fed with normal or high-fat diet, focusing on the mechanisms linking genes involved with those regulating circadian rhythms.

View Article and Find Full Text PDF

Cancer patients experience circadian rhythm disruptions during and after chemotherapy that can contribute to debilitating side effects. It is unknown how chemotherapy mediates circadian disruptions, and specifically the extent to which these disruptions occur at the level of the principal clock, the suprachiasmatic nuclei (SCN) of the hypothalamus. In the present study, we assessed how the commonly used chemotherapeutic, paclitaxel, impacts the SCN molecular clock and SCN-dependent behavioral adaptations to circadian challenges in female mice.

View Article and Find Full Text PDF

Latitudinal-environmental variations driving the local adaptation of stocks along the Chinese coast.

Mar Life Sci Technol

August 2025

Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, and The Key Laboratory of Experimental Marine Biology, Centre for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266000 China.

Unlabelled: The distribution of (Euphrasen, 1788) spans a pronounced latitudinal-environmental gradient from the subtropical to the subpolar zones. The species is reported to have multiple stocks along coastal China, exhibiting different spawning behaviors and habitat preferences. Such ecological variations might imply potential genetic divergence and local adaptation.

View Article and Find Full Text PDF

has been a pioneering model system for investigations into the genetic bases of behaviour. Studies of circadian activity were some of the first behaviours investigated in flies. The Activity Monitoring (DAM) system by TriKinetics played a key role in establishing the fundamental feedback loop of the circadian clock.

View Article and Find Full Text PDF