Spatial effects of photosensitization on morphology of giant unilamellar vesicles.

Biophys Chem

Department of Food Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark. Electronic address:

Published: August 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Singlet oxygen (O) formed through photosensitization may initiate oxidative destruction of biomembranes, however, the influence from the spatial organization of photosensitizers (PS) relative to membranes remains unclear. To clarify this issue, we loaded riboflavin 5'-(dihydrogen phosphate) monosodium (FMN-Na) as a hydrophilic PS into the lumen of halloysite nanotubes (HNTs), and attached the nanoassemblies (FMN-Na@HNTs), via Pickering effects, to the outer surfaces of giant unilamellar vesicles (GUVs) of phospholipids. We also prepared GUVs dopped with lumiflavin (LF) as a lipophilic PS having a O quantum yield comparable to FMN-Na. FMN-Na capsulated in HNT was characterized by a longer triplet excited state lifetime (12.1 μs) compared to FMN-Na free in solution (7.5 μs), and FMN-Na in both forms efficiently generated O upon illumination. The spatio-effects of PS on the photosensitized morphological changes of membranes were studied using conventional optical microscopy by monitoring GUV morphological changes. Upon light exposure (400-440 nm), the GUVs attached with FMN-Na@HNT merely experienced membrane deformation starting from the original spherical shape, ascribed to Type II photosensitization with O as oxidant. In contrast, photooxidation of LF dopped GUVs mainly led to membrane coarsening and budding assigned to Type I photosensitization. The spatial effects of PS on photosensitized morphological changes were related to the different lipid oxidation products generated through Type I and Type II photosensitized lipid oxidation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bpc.2021.106624DOI Listing

Publication Analysis

Top Keywords

morphological changes
12
spatial effects
8
giant unilamellar
8
unilamellar vesicles
8
photosensitized morphological
8
type photosensitization
8
lipid oxidation
8
fmn-na
5
photosensitization
4
effects photosensitization
4

Similar Publications

Objective: To investigate the characteristics of brain structures in patients with noise-induced hearing loss (NIHL) using source-based morphometry (SBM) and to evaluate the correlation between abnormal brain regions and clinical data.

Methods: High-resolution 3D T1 structural images were acquired from 81 patients with NIHL and 74 age- and education level-matched healthy controls (HCs). The clinical data of all subjects were collected, including noise exposure time, monaural hearing threshold weighted values (MTWVs), Mini-Mental State Examination (MMSE), and Hamilton Anxiety Scale (HAMA) scores.

View Article and Find Full Text PDF

The human fungal pathogen changes its morphology in response to temperature. At 37°C, it grows as a budding yeast, whereas at room temperature (RT), it transitions to hyphal growth. Prior work has demonstrated that 15-20% of transcripts are temperature-regulated, and that transcription factors (TFs) Ryp1-4 are necessary to establish yeast growth.

View Article and Find Full Text PDF

Bismuth ferrite (BiFeO) is a semiconductor with multiferroic properties, synthesized by the sol-gel method. While static high-pressure studies have advanced our understanding of the phase behavior of BiFeO, the effects of dynamic pressure acoustic shock waves remain unexplored. In this study, BiFeO was subjected to 100 shock pulses with 0.

View Article and Find Full Text PDF

Fulminant myocarditis is characterized by an extremely severe course and remains a life-threatening disease. Only isolated cases of diffuse myocardial calcification in myocarditis have been reported. For this reason, the process of natural evolution of myocardial structural changes and their impact on the cardiovascular system have not yet been sufficiently studied.

View Article and Find Full Text PDF

Objectives: This study explores cranial morphological variation and population continuity in the Carpathian Basin from the 1st to 13th centuries CE. It focuses on assessing biological differences and similarities across major archaeological periods, with particular emphasis on the Avar, Hungarian Conquest, and Árpádian Age populations.

Materials And Methods: A total of 1,597 adult crania (864 males, 733 females) were analyzed using six neurocranial measurements.

View Article and Find Full Text PDF