Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

End-to-end trained convolutional neural networks have led to a breakthrough in optical flow estimation. The most recent advances focus on improving the optical flow estimation by improving the architecture and setting a new benchmark on the publicly available MPI-Sintel dataset. Instead, in this article, we investigate how deep neural networks estimate optical flow. A better understanding of how these networks function is important for (i) assessing their generalization capabilities to unseen inputs, and (ii) suggesting changes to improve their performance. For our investigation, we focus on FlowNetS, as it is the prototype of an encoder-decoder neural network for optical flow estimation. Furthermore, we use a filter identification method that has played a major role in uncovering the motion filters present in animal brains in neuropsychological research. The method shows that the filters in the deepest layer of FlowNetS are sensitive to a variety of motion patterns. Not only do we find translation filters, as demonstrated in animal brains, but thanks to the easier measurements in artificial neural networks, we even unveil dilation, rotation, and occlusion filters. Furthermore, we find similarities in the refinement part of the network and the perceptual filling-in process which occurs in the mammal primary visual cortex.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TPAMI.2021.3083538DOI Listing

Publication Analysis

Top Keywords

neural networks
16
optical flow
16
flow estimation
12
networks estimate
8
estimate optical
8
animal brains
8
neural
5
optical
5
optical flow?
4
flow? neuropsychology-inspired
4

Similar Publications

Objectives: Non-small cell lung cancer (NSCLC) is associated with poor prognosis, with 30% of patients diagnosed at an advanced stage. Mutations in the and genes are important prognostic factors for NSCLC, and targeted therapies can significantly improve survival in these patients. Although tissue biopsy remains the gold standard for detecting gene mutations, it has limitations, including invasiveness, sampling errors due to tumor heterogeneity, and poor reproducibility.

View Article and Find Full Text PDF

Artificial Intelligence in Contact Dermatitis: Current and Future Perspectives.

Dermatitis

September 2025

From the Department of Dermatology, Venereology and Leprology, All India Institute of Medical Sciences (AIIMS), Bhopal, India.

Contact dermatitis (CD), which includes both allergic CD and irritant CD, is a common inflammatory condition that can pose significant diagnostic challenges. Although patch testing is the gold standard for identifying causative allergens for allergic contact dermatitis (ACD), it is time-consuming, subjective, and requires expert interpretation. Recent advancements in artificial intelligence (AI), particularly in machine learning (ML) and deep learning, have shown promise in improving the accuracy, efficiency, and accessibility of CD diagnosis and management.

View Article and Find Full Text PDF

Subject-independent emotion detection using EEG (Electroencephalography) using Vibrational Mode Decomposition and deep learning is made possible by the scarcity of labelled EEG datasets encompassing a variety of emotions. Labelled EEG data collection over a wide range of emotional states from a broad and varied population is challenging and resource-intensive. As a result, models trained on small or biased datasets may fail to generalize well to unknown individuals or emotional states, resulting in lower accuracy and robustness in real-world applications.

View Article and Find Full Text PDF

Molecular property prediction has become essential in accelerating advancements in drug discovery and materials science. Graph Neural Networks have recently demonstrated remarkable success in molecular representation learning; however, their broader adoption is impeded by two significant challenges: (1) data scarcity and constrained model generalization due to the expensive and time-consuming task of acquiring labeled data and (2) inadequate initial node and edge features that fail to incorporate comprehensive chemical domain knowledge, notably orbital information. To address these limitations, we introduce a Knowledge-Guided Graph (KGG) framework employing self-supervised learning to pretrain models using orbital-level features in order to mitigate reliance on extensive labeled data sets.

View Article and Find Full Text PDF

Large language models (LLMs) represent a transformative advance in artificial intelligence, with growing potential to impact chronic kidney disease (CKD) management. CKD is a complex, highly prevalent condition requiring multifaceted care and substantial patient engagement. Recent developments in LLMs-including conversational AI, multimodal integration, and autonomous agents-offer novel opportunities to enhance patient education, streamline clinical documentation, and support decision-making across nephrology practice.

View Article and Find Full Text PDF