Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Rice quality changes during storage, but there have been few studies of how rice proteins changes during aging. The present study characterized the structural properties of protein in stored rice and identified the mechanism of quality deterioration using proteomics. Compared with protein from newly harvested rice, the free sulfhydryl content of protein from stored rice was significantly reduced and the disulfide bond content and surface hydrophobicity was higher. Storage resulted in a loss of α-helix and β-sheet structures and increase in β-turn and random coil structures. High-molecular-weight protein subunits decomposed to produce low-molecular-weight subunits at 30 °C, while protein aggregation occurred at 70 °C. At 30 ℃ 157 differential proteins were found and 70 ℃ 395 such proteins occurred. Redox homeostasis, response to oxidative stress, glutathione metabolism, tricarboxylic acid cycle, glycolysis/gluconeogenesis, starch and sucrose metabolism, and fatty acid biosynthesis and degradation led to the different quality of stored rice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2021.130028 | DOI Listing |