98%
921
2 minutes
20
Unlabelled: The S-glycoprotein (Spike) of the SARS-CoV-2 forms a complex with the human transmembrane protein angiotensin-converting enzyme 2 (ACE2) during infection. It forms the first line of contact with the human cell. The FDA-approved drugs and phytochemicals from Indian medicinal plants were explored. Molecular docking and simulations of these molecules targeting the ACE2-Spike complex were performed. Rutin DAB10 and Swertiapuniside were obtained as the top-scored drugs as per the docking protocol. The MD simulations of ligand-free, Rutin DAB10-bound, and Swertiapuniside-bound ACE2-Spike complex revealed abrogation of the hydrogen bonding network between the two proteins. The principal component and dynamic cross-correlation analysis pointed out conformational changes in both the proteins unique to the ligand-bound systems. The interface residues, His34, and Lys353 from ACE2 and Arg403, and Tyr495 from the Spike protein formed significant strong interactions with the ligand molecules, inferring the inhibition of ACE2-Spike complex. Few novel interactions specific to Rutin-DAB10 and Swertiapuniside were also identified. The conformational flexibility of the drug-binding pocket was captured using the RMSD-based clustering of the ligand-free simulations. Ensemble docking was performed wherein the FDA-approved database and phytochemical dataset were docked on each of the cluster representatives of the ACE2-Spike. The phytochemicals identified belonged to , , and Rutin DAB10, fulvestrant, elbasvir from FDA.
Supplementary Information: The online version contains supplementary material available at 10.1007/s11696-021-01680-1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8106519 | PMC |
http://dx.doi.org/10.1007/s11696-021-01680-1 | DOI Listing |
Open Life Sci
February 2025
Laboratory of Microbiology Applied to the Food Industry, Biomedical and the Environment, Faculty of Natural and Life Sciences, Earth and Universe Sciences, Department of Biology, University of Abou Bekr Belkaid, Tlemcen, 13000, Algeria.
The COVID-19 pandemic, an unprecedented global health crisis, has thrust humanity into a relentless battle with a variety of treatments and vaccines against the SARS-CoV-2 virus. Recent developments in nanotechnology have garnered significant interest in the application of metallic nanoparticles (NPs); specifically, silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) have demonstrated antimicrobial and antiviral properties. This study investigates the molecular interactions between the receptor binding domains of five SARS-CoV-2 spike protein variants (Alpha, Beta, Delta, Omicron, and Gamma) and the angiotensin-converting enzyme 2 (ACE2) receptor, followed by the docking of AuNPs and AgNPs and the natural compound Beta-escin onto these complexes.
View Article and Find Full Text PDFPhysiol Res
December 2024
Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.
The global COVID-19 pandemic, caused by SARS-CoV-2, has led to significant morbidity and mortality, with a profound impact on cardiovascular health. This review investigates the mechanisms of SARS-CoV-2's interaction with cardiac tissue, particularly emphasizing the role of the Spike protein and ACE2 receptor in facilitating viral entry and subsequent cardiac complications. We dissect the structural features of the virus, its interactions with host cell receptors, and the resulting pathophysiological changes in the heart.
View Article and Find Full Text PDFIn Silico Pharmacol
March 2024
Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, 248002 India.
The present research aims to explore the intricate link between SARS-CoV infection and susceptibility to Alzheimer's disease, focusing on the role of APOE4, a genetic factor associated with both conditions. Our research aims to uncover shared molecular pathways, considering APOE4's impact on lipid metabolism, immune responses, and neuroinflammation relevant to COVID-19 and AD. The Chyawanprash phytocompounds were subjected to in-silico ADMET profiling and Zeatin a neuroprotective cytokinin emerged as a promising regulator of the ACE2-SPIKE complex as it exhibits favourable pharmacological attributes, presenting as a non-substrate for Permeability glycoprotein, low Protein Binding Percentage, and distinctive toxicity endpoints.
View Article and Find Full Text PDFJ Biomol Struct Dyn
February 2025
Department of Physics and Energy Engineering, Amirkabir University of Technology, Tehran, Iran.
The initial interaction between COVID-19 and the human body involves the receptor-binding domain (RBD) of the viral spike protein with the angiotensin-converting enzyme 2 (ACE2) receptor. Likewise, the spike protein can engage with immune-related proteins, such as toll-like receptors (TLRs) and pulmonary surfactant proteins A (SP-A) and D (SP-D), thereby triggering immune responses. In this study, we utilize computational methods to investigate the interactions between the spike protein and TLRs (specifically TLR2 and TLR4), as well as (SP-A) and (SP-D).
View Article and Find Full Text PDFSignal Transduct Target Ther
October 2023
Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 510623, Guangzhou, Guangdong, China.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has had a significant impact on healthcare systems and economies worldwide. The continuous emergence of new viral strains presents a major challenge in the development of effective antiviral agents. Strategies that possess broad-spectrum antiviral activities are desirable to control SARS-CoV-2 infection.
View Article and Find Full Text PDF