Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A chitin-binding domain could contribute to the antifungal ability of chitinase through its affinity to the fungal lateral wall by hydrophobic interactions. Complementary DNA encoding the antifungal chitinase of gazyumaru (Ficus microcarpa), designated GlxChiB, was cloned and expressed in Escherichia coli cells. The results of cDNA cloning showed that the precursor of GlxChiB has an N-terminal endoplasmic reticulum targeting signal and C-terminal vacuolar targeting signal, whereas mature GlxChiB is composed of an N-terminal carbohydrate-binding module family-18 domain (CBM18) and a C-terminal glycoside hydrolase family-19 domain (GH19) with a short linker. To clarify the role of the CBM18 domain in the antifungal activity of chitinase, the recombinant GlxChiB (wild type) and its catalytic domain (CatD) were used in quantitative antifungal assays under different ionic strengths and microscopic observations against the fungus Trichoderma viride. The antifungal activity of the wild type was stronger than that of CatD under all ionic strength conditions used in this assay; however, the antifungal activity of CatD became weaker with increasing ionic strength, whereas that of the wild type was maintained. The results at high ionic strength further verified the contribution of the CBM18 domain to the antifungal ability of GlxChiB. The microscopic observations clearly showed that the wild type acted on both the tips and the lateral wall of fungal hyphae, while CatD acted only on the tips. These results suggest that the CBM18 domain could contribute to the antifungal ability of chitinase through its affinity to the fungal lateral wall by hydrophobic interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-021-03639-8DOI Listing

Publication Analysis

Top Keywords

antifungal activity
16
wild type
16
antifungal ability
12
lateral wall
12
cbm18 domain
12
ionic strength
12
antifungal
10
cdna cloning
8
activity chitinase
8
ficus microcarpa
8

Similar Publications

Nonexpressor of pathogenesis-related genes 1 (NPR1) is a master regulator of salicylic acid (SA)- facilitated plant hormone signaling and plays a crucial role in plant defense through the activation of systemic acquired resistance (SAR). Although like genes are associated with stress responses in a variety of plant species, no thorough genome-wide investigation of these genes has been undertaken in pearl millet (). This study discovered seven -like genes on four pearl millet chromosomes (Chr1, Chr2, Chr4, and Chr6), which exhibit close affinity to NPRs from other plants and have common gene structures, conserved motifs, and domains.

View Article and Find Full Text PDF

Herein, ruthenium nanoparticles (RuNPs) were synthesized using Tridax procumbens leaf extract as a reducing and stabilizing agent. The synthesis was optimized by adjusting temperature, leaf extract concentration, and reaction time. The synthesized RuNPs were characterized using UV-visible, XRD, EDAX, FTIR spectroscopy, SEM, and TEM, revealing uniform size and morphology.

View Article and Find Full Text PDF

Antibacterial mode of action of thyme white (Thymus vulgaris L.) essential oil and its constituents, thymol and carvacrol against Agrobacterium tumefaciens via down-regulation of manganese transport genes, sitABCD and mntH.

Pestic Biochem Physiol

November 2025

Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of

In this study, we evaluated the antibacterial activities of plant essential oils (EOs) from the Lamiaceae family against Agrobacterium tumefaciens to find new eco-friendly antimicrobials. Thymus vulgaris L. (thyme white) EO demonstrated the most potent fumigant antibacterial activity among these.

View Article and Find Full Text PDF

Indole-based natural product for plant protection: Discovery of alkaloid barrettin and its derivatives as novel antiviral and antifungal agents.

Pestic Biochem Physiol

November 2025

Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China. Electronic address:

The extensive use of highly toxic and residual pesticides has a significant negative impact on agricultural production and the ecological environment. The development of new green antiviral agents has become a major demand for ensuring the development of green ecological agriculture. Indole alkaloids are widely present in nature and have diverse biological activities.

View Article and Find Full Text PDF

Tomato Fusarium wilt, caused by the soil-borne pathogen Fusarium oxysporum f. sp. lycopersici (Fol), poses a significant threat to global tomato production, resulting in severe losses in both yield and quality.

View Article and Find Full Text PDF