98%
921
2 minutes
20
Fine roots constitute a significant component of the net primary productivity (NPP) of forest ecosystems but are much less studied than aboveground NPP. Comparisons across sites and regions are also hampered by inconsistent methodologies, especially in tropical areas. Here, we present a novel dataset of fine root biomass, productivity, residence time, and allocation in tropical old-growth rainforest sites worldwide, measured using consistent methods, and examine how these variables are related to consistently determined soil and climatic characteristics. Our pantropical dataset spans intensive monitoring plots in lowland (wet, semi-deciduous, and deciduous) and montane tropical forests in South America, Africa, and Southeast Asia (n = 47). Large spatial variation in fine root dynamics was observed across montane and lowland forest types. In lowland forests, we found a strong positive linear relationship between fine root productivity and sand content, this relationship was even stronger when we considered the fractional allocation of total NPP to fine roots, demonstrating that understanding allocation adds explanatory power to understanding fine root productivity and total NPP. Fine root residence time was a function of multiple factors: soil sand content, soil pH, and maximum water deficit, with longest residence times in acidic, sandy, and water-stressed soils. In tropical montane forests, on the other hand, a different set of relationships prevailed, highlighting the very different nature of montane and lowland forest biomes. Root productivity was a strong positive linear function of mean annual temperature, root residence time was a strong positive function of soil nitrogen content in montane forests, and lastly decreasing soil P content increased allocation of productivity to fine roots. In contrast to the lowlands, environmental conditions were a better predictor for fine root productivity than for fractional allocation of total NPP to fine roots, suggesting that root productivity is a particularly strong driver of NPP allocation in tropical mountain regions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gcb.15677 | DOI Listing |
Plant Cell Environ
September 2025
Max-Planck Institute for Biogeochemistry, Jena, Germany.
The time elapsed between carbon fixation into nonstructural carbohydrates (NSC) and their use to grow tree structural tissues can be estimated by C ages. Reported C-ages indicate that NSC used to grow root tissues (growth NSC) can vary from < 1 year to decades. To understand the controls of this variability, we compared C-ages of leaf, branch, and root tissues from two conifers (Larix decidua, Pinus mugo) in a control valley site and an alpine treeline ecotone where low temperatures restrict tree growth.
View Article and Find Full Text PDFPLoS One
September 2025
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, United States of America.
Accurately estimating kinetic metrics, such as braking and propulsion forces, in real-world running environments enhances our understanding of performance, fatigue, and injury. Wearable inertial measurement units (IMUs) offer a potential solution to estimate kinetic metrics outside the lab when combined with machine learning. However, current IMU-based kinetic estimation models are trained and evaluated within a single environment, often on lab treadmills.
View Article and Find Full Text PDFInt Dent J
September 2025
Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China. Electronic address:
Introduction And Aims: Calcified root canals in mandibular anterior teeth present significant therapeutic challenges due to their narrow anatomy and minimal tolerance for procedural errors. This case report demonstrates the successful integration of robot-assisted navigation with an ultra-fine bur to address these challenges.
Methods: A 44-year-old male presented with symptomatic chronic apical periodontitis and pulp calcification in a mandibular lateral incisor, 20 years after orthodontic treatment.
Sci Data
September 2025
School of Geospatial Engineering and Science, Sun Yat-sen University & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
Longwave radiation (LWR) is a critical factor in surface energy balance and greenhouse effect studies, and its accurate measurement is essential for understanding climate change. However, existing remote sensing-based LWR products still have room for improvement in terms of spatiotemporal coverage, resolution, and accuracy. To address this issue, we developed the LWR Component of the global Long-term Earth System spatiotemporally Seamless Radiation budget dataset (LessRad).
View Article and Find Full Text PDFPlant Cell Environ
September 2025
State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China.