98%
921
2 minutes
20
One of the most important events in an animal's life history is the initial colonization by its microbial symbionts, yet little is known about this event's immediate impacts on the extent of host gene expression or the molecular mechanisms controlling it. MicroRNAs (miRNAs) are short, noncoding RNAs that bind to target mRNAs, rapidly shaping gene expression by posttranscriptional control of mRNA translation and decay. Here, we show that, in the experimentally tractable binary squid-vibrio symbiosis, colonization of the light organ induces extensive changes in the miRNA transcriptome. Examination of the squid genome revealed the presence of evolutionarily conserved genes encoding elements essential for the production and processing of miRNAs. At 24 h postcolonization, 215 host miRNAs were detected in the light organ, 26 of which were differentially expressed in response to the symbionts. A functional enrichment analysis of genes potentially targeted by downregulation of certain miRNAs at the initiation of symbiosis revealed two major gene ontology (GO) term categories, neurodevelopment and tissue remodeling. This symbiont-induced downregulation is predicted to promote these activities in host tissues and is consistent with the well-described tissue remodeling that occurs at the onset of the association. Conversely, predicted targets of upregulated miRNAs, including the production of mucus, are consistent with attenuation of immune responses by symbiosis. Taken together, our data provide evidence that, at the onset of symbiosis, host miRNAs in the light organ drive alterations in gene expression that (i) orchestrate the symbiont-induced development of host tissues, and (ii) facilitate the partnership by dampening the immune response. Animals often acquire their microbiome from the environment at each generation, making the initial interaction of the partners a critical event in the establishment and development of a stable, healthy symbiosis. However, the molecular nature of these earliest interactions is generally difficult to study and poorly understood. We report that, during the initial 24 h of the squid-vibrio association, a differential expression of host miRNAs is triggered by the presence of the microbial partner. Predicted mRNA targets of these miRNAs were associated with regulatory networks that drive tissue remodeling and immune suppression, two major symbiosis-induced developmental outcomes in this and many other associations. These results implicate regulation by miRNAs as key to orchestrating the critical transcriptional responses that occur very early during the establishment of a symbiosis. Animals with more complex microbiota may have similar miRNA-driven responses as their association is initiated, supporting an evolutionary conservation of symbiosis-induced developmental mechanisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8125070 | PMC |
http://dx.doi.org/10.1128/mSystems.00081-21 | DOI Listing |
Anim Reprod Sci
September 2025
Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping SE-58185, Sweden.
Embryo transfer (ET) is a valuable reproductive technology in pigs, albeit its efficiency remains significantly lower than that of natural mating or artificial insemination (AI), owing to high embryonic death rates. Critical for embryo survival and pregnancy success is the placenta, which supports conceptus development through nutrient exchange, hormone production, and immune modulation. Alterations in placental development and function may therefore underlie the reduced efficiency of ET.
View Article and Find Full Text PDFJ Econ Entomol
September 2025
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
The ability of parasitoid wasps to precisely locate hosts in complex environments is a key factor in suppressing pest populations. Chemical communication plays an essential role in mediating insect behaviors such as locating food sources, hosts, and mates. Odorant receptors (ORs) are the key connection between external odors and olfactory nerves.
View Article and Find Full Text PDFTurk J Pediatr
September 2025
Department of Pediatric Hematology and Oncology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
Background: The expression and clinical correlation of BRAFV600E mutation and programmed cell death-1 ligand 1 (PD-L1) in children with Langerhans cell histiocytosis (LCH) have been reported, but the conclusions of previous studies are inconsistent. In addition, it has been reported that elevated cathepsin S (CTSS) expression is associated with various cancers. However, there is currently no research on the correlation between CTSS and LCH.
View Article and Find Full Text PDFPlant J
September 2025
Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea.
Salt stress impairs photosynthetic efficiency and consequently reduces the growth, development, and grain yield of crop plants. The formation of hydrophobic barriers in the root endodermis, including the suberin lamellae and Casparian strips, is a key adaptive strategy for salt stress tolerance. In this study, we identified the role of the rice NAC transcription factor, ONAC005, in salt stress tolerance.
View Article and Find Full Text PDFACS Biomater Sci Eng
September 2025
Materials Engineering, McGill university, Montreal H3A0C5, Canada.
Transcutaneous devices such as dental implants frequently fail due to infections at their interfaces with epithelial tissues. These infections are facilitated by the lack of integration between the devices and the surrounding soft tissues. This study aims to improve epithelial integration through surface modification of a transcutaneous implant material (polyetheretherketone (PEEK)).
View Article and Find Full Text PDF