98%
921
2 minutes
20
Purpose: To better understand juvenile myopia in the context of overall refractive development during childhood and to suggest more informative ways of analysing relevant data, particularly in relation to early identification of those children who are likely to become markedly myopic and would therefore benefit from myopia control.
Methods: Examples of the frequency distributions of childhood mean spherical refractive errors (MSEs) at different ages, taken from previously-published longitudinal and cross-sectional studies, are analysed in terms of Flitcroft's model of a linear combination of two Gaussian distributions with different means and standard deviations. Flitcroft hypothesises that one, relatively-narrow, Gaussian (Mode 1) represents a "regulated" population which maintains normal emmetropisation and the other, broader, Gaussian (Mode 2) a "dysregulated" population.
Results: Analysis confirms that Flitcroft's model successfully describes the major features of the frequency distribution of MSEs in randomly-selected populations of children of the same age. The narrow "regulated" Gaussian typically changes only slightly between the ages of about 6 and 15, whereas the mean of the broader "dysregulated" Gaussian changes with age more rapidly in the myopic direction and its standard deviation increases. These effects vary with the ethnicity, environment and other characteristics of the population involved. At all ages there is considerable overlap between the two Gaussians. This limits the utility of simple refractive cut-off values to identify those children likely to show marked myopic progression.
Conclusions: Analysing the frequency distributions for individual MSEs in terms of bi-Gaussian models can provide useful insights into childhood refractive change. A wider exploration of the methodology and its extension to include individual progression rates is warranted, using a range of populations of children exposed to different ethnic, environmental and other factors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.clae.2021.101451 | DOI Listing |
Lab Anim Res
September 2025
Korea Model Animal Priority Center (KMPC), Seoul, Republic of Korea.
Background: Laboratory animal veterinarians play a crucial role as a bridge between the ethical use of laboratory animals and the advancement of scientific and medical knowledge in biomedical research. They alleviate pain and reduce distress through veterinary care of laboratory animals. Additionally, they enhance animal welfare by creating environments that mimic natural habitats through environmental enrichment and social associations.
View Article and Find Full Text PDFAlzheimers Res Ther
September 2025
Department of Neurology, Saarland University, Kirrberger Straße, 66421, Homburg/Saar, Germany.
Background: Alzheimer's disease (AD) patients and animal models exhibit an altered gut microbiome that is associated with pathological changes in the brain. Intestinal miRNA enters bacteria and regulates bacterial metabolism and proliferation. This study aimed to investigate whether the manipulation of miRNA could alter the gut microbiome and AD pathologies.
View Article and Find Full Text PDFJ Intensive Care
September 2025
German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-Universitat (LMU), University Hospital Grosshadern, Munich, Germany.
Background: Survivors of critical illness frequently face physical, cognitive and psychological impairments after intensive care. Sensorimotor impairments potentially have a negative impact on participation. However, comprehensive understanding of sensorimotor recovery and participation in survivors of critical illness is limited.
View Article and Find Full Text PDFNutr J
September 2025
Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, 208 Huancheng Dong Road, Hangzhou, 310003, Zhejiang Province, China.
Background: The potential association between dietary inflammatory index (DII) and colorectal cancer (CRC) risk, as well as colorectal adenomas (CRA) risk, has been extensively studied, but the findings remain inconclusive. We conducted this systematic review and dose-response meta-analysis to investigate the relationship between the DII and CRC and CRA.
Methods: We comprehensively searched the PubMed, Embase, Cochrane Library, and Web of Science databases for cohort and case-control studies reporting the relationship between DII and CRA, or between DII and CRC, as of 15 July 2025.