Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cigar tobacco leaves (CTLs) contain abundant bacteria and fungi that are vital to leaf quality during fermentation. In this study, artificial fermentation was used for the fermentation of CTLs since it was more controllable and efficient than natural aging. The bacterial and fungal community structure and composition in unfermented and fermented CTLs were determined to understand the effects of microbes on the characteristics of CTLs during artificial fermentation. The relationship between the chemical contents and alterations in the microbial composition was evaluated, and the functions of bacteria and fungi in fermented CTLs were predicted to determine the possible metabolic pathways. After artificial fermentation, the bacterial and fungal community structure significantly changed in CTLs. The total nitrate and nicotine contents were most readily affected by the bacterial and fungal communities, respectively. FAPROTAX software predictions of the bacterial community revealed increases in functions related to compound transformation after fermentation. FUNGuild predictions of the fungal community revealed an increase in the content of saprotrophic fungi after fermentation. These data provide information regarding the artificial fermentation mechanism of CTLs and will inform safety and quality improvements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8483401PMC
http://dx.doi.org/10.1002/mbo3.1171DOI Listing

Publication Analysis

Top Keywords

artificial fermentation
16
bacterial fungal
12
fungal community
12
fermentation
9
cigar tobacco
8
tobacco leaves
8
bacteria fungi
8
community structure
8
fermented ctls
8
community revealed
8

Similar Publications

Intersecting precision fermentation for global cell-based food production innovation: Challenges and opportunities.

Biotechnol Adv

September 2025

College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, Ch

Precision fermentation represents an innovative cell-based production approach that employs synthetic biology and metabolic engineering tools, revolutionizing global food production by utilizing "microbial cell factories" to produce added-value ingredients. However, its global implementation is hindered by technological and scalability bottlenecks, regulatory fragmentation, regional accessibility and consumer acceptance, and nutritional trade-offs challenges. This review utilizes illustrated case studies and modeling analysis to present a detailed exploration of precision fermentation intersecting with global cell-based food production, discussing actionable research gaps and insights as well as advanced bioengineering practices and analytical techniques, to address these challenges for ongoing academic research, industrial applications and policy initiatives, thus supporting the transition of fermentation-enabled food production toward efficient and sustainable manufacturing.

View Article and Find Full Text PDF

Artificial intelligence-driven fermentation optimization for α-amylase hyperproduction enabled by Raman monitoring and metabolic network analysis.

Bioresour Technol

September 2025

State Key Laboratory of Bioreactor Engineering, Qingdao Innovation Institute of East China University of Science and Technology, East China University of Science and Technology, Shanghai 200237, China; National Center of Bio-Engineering & Technology (Shanghai), East China University of Science and T

α-Amylase is a high-value enzyme widely applied in food, feed, textile, and bioenergy industries, yet achieving stable high-level production in Aspergillus niger remains difficult due to nonlinear fermentation dynamics and limited real-time control. To this end, an AI-driven fermentation optimization framework was established by combining multivariate machine learning, Raman spectroscopy-based glucose monitoring, and time-series transcriptomics. Twelve algorithms were benchmarked, with Random Forest showing the best predictive power, while SHAP interpretation highlighted glucose as the dominant regulatory factor.

View Article and Find Full Text PDF

Leveraging artificial intelligence for efficient microbial production.

Bioresour Technol

September 2025

School of Chemical, Materials and Biomedical Engineering, College of Engineering, the University of Georgia, College of Engineering, Athens, GA 30602, USA. Electronic address:

Microbial production is a sustainable and economical approach to producing value-added compounds by functional enzyme application, precise metabolism regulation, effective strain development, and optimal bioprocess control. However, practical microbial production faces multiple problems. Specifically, insufficient functional enzymes limit biosynthetic pathway construction, while inadequate metabolic regulatory tools and suboptimal bioprocess control constrain productivity.

View Article and Find Full Text PDF

The aim of this experiment was to determine the effects of walnut (Juglans regia L.) green husk (WGH) supplemented to ration on rumen fermentation by in vitro gas production technique. WGH was supplemented at different ratios (0%, 2%, 4%, 6%, 8%, and 10%) to the total mixture ration formed from 80%/20% roughage/concentrate feed.

View Article and Find Full Text PDF

Background And Aim: Silage plays a pivotal role in ruminant nutrition, significantly influencing rumen fermentation, animal productivity, and environmental sustainability. Despite extensive research on silage and fermentation, a comprehensive synthesis of global trends and collaborations in this domain has not been systematically explored. This study aimed to conduct a bibliometric analysis of global research on silage feed and its effects on rumen fermentation in ruminants.

View Article and Find Full Text PDF