98%
921
2 minutes
20
The possibility of building an interference-free calibration with first-order instrumental data with multivariate curve resolution-alternating least-squares (MCR-ALS) has been a recent topic of interest. When the protocols were successful, MCR-ALS proved to be suitable for the extraction of chemically meaningful information from first-order calibration datasets, even in the presence of unexpected species, i.e., constituents present in the test samples but absent in the calibration set. This may represent an interesting advantage over classical first-order models, e.g. partial least-squares regression (PLS). However, the predictive capacity of MCR-ALS models can be severely affected by rotational ambiguity (RA), which is usually present in first-order datasets when interferents occur, and has not been always characterized in the published analytical protocols. The aim of this report is to discuss important issues regarding MCR-ALS modelling of first-order data for a calibration scenario with a single analyte and one interferent through simulated and experimental data. Specifically, the question of when and why MCR-ALS allows one to build interference-free calibration models with first-order data is studied in terms of signal overlapping, extent of RA, and especially the role of ALS initialization procedures in prediction performance. The aim is to alert analytical chemists that interference-free MCR-ALS with first-order data may not always be successful.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2021.338465 | DOI Listing |
BMC Chem
August 2025
Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
Selective, and green spectrophotometric methods have been developed for the simultaneous analysis of remdesivir (RDV) and moxifloxacin hydrochloride (MFX), two active agents that are being used together in COVID-19 treatment. Because of the considerable spectral overlap, six mathematical spectrophotometric approaches were applied, including ratio derivative, ratio difference, mean centering of ratio spectra, area under the curve, Q-analysis, and bivariate calibration, to allow accurate interference-free determination without preliminary separation. The proposed methods were validated as per ICH guidelines, demonstrating excellent linearity over the concentration ranges of 1-15 µg/mL for RDV and 1-10 µg/mL for MFX, with correlation coefficients exceeding 0.
View Article and Find Full Text PDFLaser absorption spectroscopy (LAS) is a well-established measurement technique for quantitative chemical speciation in a combustion environment. However, LAS measurement of nitric oxide (NO) in ammonia flames has never been reported in the literature. This is despite the community's recent strong interest in carbon-neutral ammonia combustion and the associated NO formation problem.
View Article and Find Full Text PDFMetabolites
November 2024
Center for Research on Multidimensional Separation Science, School of Chemical Sciences, Universiti Sains Malaysia, USM 11800, Penang, Malaysia.
Anal Chem
November 2024
Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, P. R. China.
In this study, we developed ratiometric surface-enhanced Raman scattering (SERS) biosensors using Ag-Au alloy nanoflowers as SERS substrates, molecules having amide bonds and alkyne groups (Tag A) as Raman reporters, and sodium thiocyanate as an internal standard molecule (Tag B) for the sensitive detection of human carboxylesterase-1 (hCE1) in HepG-2 cells. The correlation between HepG-2 cell damage and hCE1 activity levels was investigated. Both Tag A's alkyne group and Tag B's cyanide group produced characteristic SERS signals in the Raman-silent region ( and , respectively).
View Article and Find Full Text PDFTalanta
January 2025
Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciołkowskiego 1K, 15-245, Białystok, Poland.
This work presents a simple and accurate method for the fast sequential determination of Rh, Pd, and Pt in spent automotive catalysts and e-wastes using high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS). Extensive research was carried out in model systems on the impact of potential interfering substances on analyte's signals measured in two types of flame (air-CH and NO-CH). Mutual analyte interactions were also taken into account.
View Article and Find Full Text PDF