Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Coronaviruses have caused several human epidemics and pandemics including the ongoing coronavirus disease 2019 (COVID-19). Prophylactic vaccines and therapeutic antibodies have already shown striking effectiveness against COVID-19. Nevertheless, concerns remain about antigenic drift in SARS-CoV-2 as well as threats from other sarbecoviruses. Cross-neutralizing antibodies to SARS-related viruses provide opportunities to address such concerns. Here, we report on crystal structures of a cross-neutralizing antibody, CV38-142, in complex with the receptor-binding domains from SARS-CoV-2 and SARS-CoV. Recognition of the N343 glycosylation site and water-mediated interactions facilitate cross-reactivity of CV38-142 to SARS-related viruses, allowing the antibody to accommodate antigenic variation in these viruses. CV38-142 synergizes with other cross-neutralizing antibodies, notably COVA1-16, to enhance neutralization of SARS-CoV and SARS-CoV-2, including circulating variants of concern B.1.1.7 and B.1.351. Overall, this study provides valuable information for vaccine and therapeutic design to address current and future antigenic drift in SARS-CoV-2 and to protect against zoonotic SARS-related coronaviruses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8049401PMC
http://dx.doi.org/10.1016/j.chom.2021.04.005DOI Listing

Publication Analysis

Top Keywords

cross-neutralizing antibodies
12
sars-cov-2 sars-cov
8
antigenic drift
8
drift sars-cov-2
8
sars-related viruses
8
sars-cov-2
5
combination cross-neutralizing
4
antibodies
4
antibodies synergizes
4
synergizes prevent
4

Similar Publications

The global outbreak of the mpox in humans, caused by the mpox virus (MPXV), underscores the urgent need for safe and effective therapeutics. In this study, we characterized the dominant MPXV immunogens, M1R and B6R, by sequencing monoclonal antibodies (MAbs) from the immunized mice and analyzing their epitopes and functions through in vitro and in vivo assessments of binding and antiviral activities. Several broadly effective anti-M1R and anti-B6R neutralizing MAbs were identified and they exhibited enhanced antiviral effects against MPXV or vaccinia virus (VACV) when used in antibody cocktail and bispecific antibody designs.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome virus (PRRSV) imposes substantial economic losses on global swine production. While modified live vaccines remain the primary prevention tool, their efficacy is compromised by the genetic variability of PRRSV. This study developed a broadly neutralizing monoclonal antibody (mAb) that targets a conserved viral epitope as an alternative therapeutic strategy.

View Article and Find Full Text PDF

HIV-1 bNAb Vaccinal Effect - An Underachieving Goal?

Curr HIV Res

August 2025

U.S. Mil-itary HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.

Reports of HIV-1-specific broadly neutralizing monoclonal antibodies (bNAbs) medi-ating a potential 'vaccinal effect' implicate passively transferred bNAbs in promoting endoge-nous anti-HIV-1 immune responses. To date, three clinical trials have reported either increased anti-HIV-1 neutralizing antibodies or T cell responses following bNAb administration to people living with HIV. Despite strong enthusiasm for this hypothesis, motivated in large part by its potential application to HIV-1 therapeutic strategies, the mechanism(s) underlying a vaccinal ef-fect remain unclear.

View Article and Find Full Text PDF

Newborns represent only 1% of the population. Yet, HIV vertical transmissions represent 10% of all new infections globally, even though antiretroviral therapy (ART) has been shown to reduce the risk of vertical transmission to less than 2%. While vaccines still represent the most efficient and cost-effective intervention to eradicate new infections, HIV immunogens that can effectively elicit broad-spectrum protection are still at least a decade away.

View Article and Find Full Text PDF

Unlabelled: The evolution of SARS-CoV-2 has resulted in antigenically distinct variants that challenge vaccine-induced immunity. The KP.2 monovalent mRNA vaccine was deployed in 2024 to address immune escape by emerging SARS-CoV-2 subvariants.

View Article and Find Full Text PDF