The 2022 mpox outbreak highlighted the serious threat of monkeypox virus (MPXV), yet effective treatments are lacking. From an mpox-convalescent individual, we identified three high-affinity human monoclonal antibodies (mAbs) (named EV35-2, EV35-6, and EV35-7) that target the A35 protein in MPXV. These antibodies block viral spread in vitro and protect mice against lethal MPXV and vaccinia virus infection via both Fc-dependent and independent mechanisms.
View Article and Find Full Text PDFMonoclonal antibodies (mAbs) that recognize and inhibit a diverse range of influenza viruses, although relatively rare, have been isolated following infection or vaccination. Study of their ontology and mechanisms of action informs universal vaccine and therapeutic development. We have previously described a potent and broad neuraminidase (NA)-neutralizing human mAb, 1122A11, that neutralizes a wide range of H3N2 viruses.
View Article and Find Full Text PDFDeveloping broad coronavirus vaccines hinges on identifying and understanding the molecular basis of conserved spike epitopes targeted by broadly neutralizing antibodies (bnAbs). Building on our earlier work identifying sarbecovirus receptor-binding domain (RBD) group 1 and 2 bnAbs, we now show that several of these antibodies retain neutralizing activity against highly mutated SARS-CoV-2 variants, including BA.2.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2025
H5Nx viruses continue to wreak havoc in avian and mammalian species worldwide. The virus distinguishes itself by the ability to replicate to high titers and transmit efficiently in a wide variety of hosts in diverse climatic environments. Fortunately, transmission to and between humans is scarce.
View Article and Find Full Text PDFIn a phase 1 clinical trial, a chimeric hemagglutinin (cHA) immunogen induced antibody responses against the conserved hemagglutinin (HA) stalk domain as designed. Here, we determined the specificity, function, and subsets of B cells induced by cHA vaccination by pairing single-cell RNA sequencing and B cell receptor repertoire sequencing. We have shown that the cHA-inactivated vaccine with a squalene-based adjuvant induced a robust activated B cell and memory B cell (MBC) phenotype against two broadly neutralizing epitopes in the stalk domain.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Chimeric hemagglutinins (cHA) appear to be promising for the design and development of universal influenza vaccines. Influenza A group 1 cHAs, cH5/1, cH8/1, and cH11/1, comprising an H1 stem attached to either an H5, H8, or H11 globular head, have been used sequentially as vaccine immunogens in human clinical trials and induced high levels of broadly protective antibodies. Using X-ray crystallography and negative-stain electron microscopy, we determined structures of cH5/1, cH8/1, and cH11/1 HAs in their apo (unliganded) and antibody Fab-bound states.
View Article and Find Full Text PDFH1N1 influenza viruses are responsible for both seasonal and pandemic influenza. The continual antigenic shift and drift of these viruses highlight the urgent need for a universal influenza vaccine to elicit broadly neutralizing antibodies (bnAbs). Identification and characterization of bnAbs elicited in natural infection and immunization to influenza virus hemagglutinin (HA) can provide insights for development of a universal influenza vaccine.
View Article and Find Full Text PDFH5Nx viruses continue to wreak havoc in avian and mammalian species worldwide. The virus distinguishes itself by the ability to replicate to high titers and transmit efficiently in a wide variety of hosts in diverse climatic environments. Fortunately, transmission to and between humans is scarce.
View Article and Find Full Text PDFIn 2024, several human infections with highly pathogenic clade 2.3.4.
View Article and Find Full Text PDFPlant Biotechnol J
January 2025
Prevention of severe COVID-19 disease by SARS-CoV-2 in high-risk patients, such as immuno-compromised individuals, can be achieved by administration of antibody prophylaxis, but producing antibodies can be costly. Plant expression platforms allow substantial lower production costs compared to traditional bio-manufacturing platforms depending on mammalian cells in bioreactors. In this study, we describe the expression, production and purification of the originally human COVA2-15 antibody in plants.
View Article and Find Full Text PDFSeasonal and pandemic-associated influenza strains cause highly contagious viral respiratory infections that can lead to severe illness and excess mortality. Here, we report on the optimization of our small-molecule inhibitor F0045(S) targeting the influenza hemagglutinin (HA) stem with our Sulfur-Fluoride Exchange (SuFEx) click chemistry-based high-throughput medicinal chemistry (HTMC) strategy. A combination of SuFEx- and amide-based lead molecule diversification and structure-guided design led to identification and validation of ultrapotent influenza fusion inhibitors with subnanomolar EC cellular antiviral activity against several influenza A group 1 strains.
View Article and Find Full Text PDFHemagglutinins (HAs) from human influenza viruses descend from avian progenitors that bind α2-3-linked sialosides and must adapt to glycans with α2-6-linked sialic acids on human airway cells to transmit within the human population. Since their introduction during the 1968 pandemic, H3N2 viruses have evolved over the past five decades to preferentially recognize human α2-6-sialoside receptors that are elongated through addition of poly-LacNAc. We show that more recent H3N2 viruses now make increasingly complex interactions with elongated receptors while continuously selecting for strains maintaining this phenotype.
View Article and Find Full Text PDFEndolysosomal exonucleases PLD3 and PLD4 (phospholipases D3 and D4) are associated with autoinflammatory and autoimmune diseases. We report structures of these enzymes, and the molecular basis of their catalysis. The structures reveal an intra-chain dimer topology forming a basic active site at the interface.
View Article and Find Full Text PDFSeasonal influenza virus vaccines are effective when they are well matched to circulating strains. Because of antigenic drift/change in the immunodominant hemagglutinin (HA) head domain, annual vaccine reformulations are necessary to maintain a match with circulating strains. In addition, seasonal vaccines provide little to no protection against newly emerging pandemic strains.
View Article and Find Full Text PDFThe emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) underscores the need for strategies to rapidly develop neutralizing monoclonal antibodies that can function as prophylactic and therapeutic agents and to help guide vaccine design. Here, we demonstrate that engineering approaches can be used to refocus an existing antibody that neutralizes one virus but not a related virus. Through a rapid affinity maturation strategy, we engineered CR3022, a SARS-CoV-1-neutralizing antibody, to bind to the receptor binding domain of SARS-CoV-2 with >1000-fold increased affinity.
View Article and Find Full Text PDFNeuraminidase (NA) is one of the two influenza virus surface glycoproteins, and antibodies that target it are an independent correlate of protection. However, our current understanding of NA antigenicity is incomplete. Here, we describe human monoclonal antibodies (mAbs) from a patient with a pandemic H1N1 virus infection in 2009.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2023
The rapid emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants that evade immunity elicited by vaccination has placed an imperative on the development of countermeasures that provide broad protection against SARS-CoV-2 and related sarbecoviruses. Here, we identified extremely potent monoclonal antibodies (mAbs) that neutralized multiple sarbecoviruses from macaques vaccinated with AS03-adjuvanted monovalent subunit vaccines. Longitudinal analysis revealed progressive accumulation of somatic mutation in the immunoglobulin genes of antigen-specific memory B cells (MBCs) for at least 1 year after primary vaccination.
View Article and Find Full Text PDFDeveloping broad coronavirus vaccines requires identifying and understanding the molecular basis of broadly neutralizing antibody (bnAb) spike sites. In our previous work, we identified sarbecovirus spike RBD group 1 and 2 bnAbs. We have now shown that many of these bnAbs can still neutralize highly mutated SARS-CoV-2 variants, including the XBB.
View Article and Find Full Text PDFPan-betacoronavirus neutralizing antibodies may hold the key to developing broadly protective vaccines against novel pandemic coronaviruses and to more effectively respond to SARS-CoV-2 variants. The emergence of Omicron and subvariants of SARS-CoV-2 illustrates the limitations of solely targeting the receptor-binding domain (RBD) of the spike (S) protein. Here, we isolated a large panel of broadly neutralizing antibodies (bnAbs) from SARS-CoV-2 recovered-vaccinated donors, which targets a conserved S2 region in the betacoronavirus spike fusion machinery.
View Article and Find Full Text PDFContemporary influenza A H3N2 viruses circulating since 2016 have acquired a glycosylation site in the neuraminidase in close proximity to the enzymatic active site. Here, we investigate if this S245N glycosylation site, as a result of antigenic evolution, can impact binding and function of human monoclonal antibodies that target the conserved active site. While we find that a reduction in the inhibitory ability of neuraminidase active site binders is measurable, this class of broadly reactive monoclonal antibodies maintains protective efficacy in vivo.
View Article and Find Full Text PDFSci Transl Med
August 2022
To prepare for future coronavirus (CoV) pandemics, it is desirable to generate vaccines capable of eliciting broadly neutralizing antibody responses to CoVs. Here, we show that immunization of macaques with SARS-CoV-2 spike (S) protein with a two-shot protocol generated potent serum receptor binding domain cross-neutralizing antibody responses to both SARS-CoV-2 and SARS-CoV-1. Furthermore, responses were equally effective against most SARS-CoV-2 variants of concern (VOCs) and some were highly effective against Omicron.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2022
Many neutralizing antibodies (nAbs) elicited to ancestral severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) through natural infection and vaccination have reduced effectiveness to SARS-CoV-2 variants. Here, we show that therapeutic antibody ADG20 is able to neutralize SARS-CoV-2 variants of concern (VOCs) including Omicron (B.1.
View Article and Find Full Text PDF