98%
921
2 minutes
20
Floating-gate transistors (FGTs) are a promising class of electronic sensing architectures that separate the transduction elements from molecular sensing components, but the factors leading to optimum device design are unknown. We developed a model, generalizable to many different semiconductor/dielectric materials and channel dimensions, to predict the sensor response to changes in capacitance and/or charge at the sensing surface upon target binding or other changes in surface chemistry. The model predictions were compared to experimental data obtained using a floating-gate (extended gate) electrochemical transistor, a variant of the generic FGT architecture that facilitates low-voltage operation and rapid, simple fabrication using printing. Self-assembled monolayer (SAM) chemistry and quasi-statically measured resistor-loaded inverters were utilized to obtain experimentally either the capacitance signals (with alkylthiol SAMs) or charge signals (with acid-terminated SAMs) of the FGT. Experiments reveal that the model captures the inverter gain and charge signals over 3 orders of magnitude variation in the size of the sensing area and the capacitance signals over 2 orders of magnitude but deviates from experiments at lower capacitances of the sensing surface (<1 nF). To guide future device design, model predictions for a large range of sensing area capacitances and characteristic voltages are provided, enabling the calculation of the optimum sensing area size for maximum charge and capacitance sensitivity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8336320 | PMC |
http://dx.doi.org/10.1021/acssensors.1c00261 | DOI Listing |
Anal Chem
September 2025
Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, China.
Despite the promise of electrochemical biosensors in amplified nucleic acid diagnostics, existing high-sensitivity platforms often rely on a multilayer surface assembly and cascade amplification confined to the electrode interface. These stepwise strategies suffer from inefficient enzyme activity, poor mass transport, and inconsistent probe orientation, which compromise the amplification efficiency, reproducibility, and practical applicability. To address these limitations, we report a programmable dual-phase electrochemical biosensing system that decouples amplification from signal transduction.
View Article and Find Full Text PDFEur J Ophthalmol
September 2025
Department of Ophthalmology, Casilino General Hospital, Rome, Italy.
PurposeTo evaluate the safety and ability of an ophthalmic solution containing Poloxamer 407 and Polyquaternium 133 to reduce conjunctival bacterial load before cataract surgery.MethodsPatients (n = 74) were randomized to 2 groups: treatment (n = 37) or placebo (treatment's vehicle; (n = 37)) BID from V1 to V3. Patients were also given standard postoperative treatment from V2 to V3.
View Article and Find Full Text PDFLangmuir
September 2025
Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
Simultaneous sensing and quantification of pharmaceutically active compounds (PhACs) are crucial for protecting the environment and maintaining long-term ecological sustainability. This study focuses on the bio-based synthesis of BiS-ZnO nanocomposites (BiS-ZnO(bio)) using bio-extract for dual-analyte selective and simultaneous electrochemical monitoring of phenylbutazone (PBZ) and sulfamethoxazole (SMZ) in the environmental matrices. BiS-ZnO(bio) exhibited ZnO(bio) nanostructures embedded on BiS(bio) nanorods with an average rod length of 1409.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Microbiology and Parasitology, Faculty of Biology - Aquatic One Health Research Center (iARCUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
Uropathogenic Escherichia coli (UPEC) are among the first pathogens to colonise in catheter and non-catheter-associated urinary tract infections. However, these infections are often polymicrobial, resulting in multi-species infections that persist by forming biofilms. Living within these highly antimicrobial tolerant communities, bacteria can establish intra- and inter-specific interactions, including quorum sensing (QS)-mediated signalling mechanisms, which play a key role in biofilm establishment and maturation.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
September 2025
Force prediction is crucial for functional rehabilitation of the upper limb. Surface electromyography (sEMG) signals play a pivotal role in muscle force studies, but its non-stationarity challenges the reliability of sEMG-driven models. This problem may be alleviated by fusion with electrical impedance myography (EIM), an active sensing technique incorporating tissue morphology information.
View Article and Find Full Text PDF