Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Engineered colloidal nanoparticles show great promise in biomedical applications. While much of the work of assessing nanoparticle impact on living systems has been focused on the direct interactions of nanoparticles with cells/organisms, indirect effects the extracellular matrix have been observed and may provide deeper insight into nanoparticle fate and effects in living systems. In particular, the large surface area of colloidal nanoparticles may sequester molecules from the biological milieu, make these molecules less bioavailable, and therefore function indirectly as "molecular knockouts" to exert effects at the cellular level and beyond. In this paper, the hypothesis that molecules that control cellular behavior (in this case, chemoattract molecules that promote migration of a human monocytic cell line, THP-1) will be less bioavailable in the presence of appropriately functionalized nanoparticles, and therefore the cellular behavior will be altered, was investigated. Three-dimensional chemotaxis assays for the characterization and comparison of THP-1 cell migration upon exposure to a gradient of monocyte chemoattractant protein-1 (MCP-1), with and without gold nanoparticles with four different surface chemistries, were performed. By time-lapse microscopy, characteristic parameters for chemotaxis, along with velocity and directionality of the cells, were quantified. Anionic poly(sodium 4-styrenesulfonate)-coated gold nanoparticles were found to significantly reduce THP-1 chemotaxis. Enzyme-linked immunosorbent assay results show adsorption of MCP-1 on the poly(sodium 4-styrenesulfonate)-coated gold nanoparticle surface, supporting the hypothesis that adsorption of chemoattractants to nanoparticle surfaces interferes with chemotaxis. Free anionic sulfonated polyelectrolytes also interfered with cell migrational behavior, showing that nanoparticles can also act as carriers of chemotactic-interfering molecules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312996PMC
http://dx.doi.org/10.1021/acsnano.1c01262DOI Listing

Publication Analysis

Top Keywords

nanoparticles
9
cellular level
8
colloidal nanoparticles
8
living systems
8
cellular behavior
8
gold nanoparticles
8
polysodium 4-styrenesulfonate-coated
8
4-styrenesulfonate-coated gold
8
chemotaxis
5
molecules
5

Similar Publications

Programmable self-assembly has recently enabled the creation of complex structures through precise control of the interparticle interactions and the particle geometries. Targeting ever more structurally complex, dynamic, and functional assemblies necessitates going beyond the design of the structure itself, to the measurement and control of the local flexibility of the intersubunit connections and its impact on the collective mechanics of the entire assembly. In this study, we demonstrate a method to infer the mechanical properties of multisubunit assemblies using cryogenic electron microscopy (cryo-EM) and RELION's multi-body refinement.

View Article and Find Full Text PDF

Acute ischemic stroke (AIS) remains a leading cause of mortality and long-term disability globally, with survivors at high risk of recurrent stroke, cardiovascular events, and post-stroke dementia. Statins, while widely used for their lipid-lowering effects, also possess pleiotropic properties, including anti-inflammatory, endothelial-stabilizing, and neuroprotective actions, which may offer added benefit in AIS management. This article synthesizes emerging evidence on statins' dual mechanisms of action and evaluates their role in reducing recurrence, improving survival, and mitigating cognitive decline.

View Article and Find Full Text PDF

Statistical quantification of SERS signals in microfluidic flow using AuNP-bound polystyrene microparticles.

Anal Sci

September 2025

Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan.

Surface-enhanced Raman scattering (SERS) is a powerful analytical technique; however, its quantitative application has been limited by the instability of substrates and significant signal fluctuations. In this study, we demonstrated that 4-aminobenzenethiol (4-ATP) can be quantitatively detected through statistical analysis of SERS signal intensity distributions obtained using citrate-stabilized AuNPs, biotin-functionalized AuNPs, and gold nanoparticle (AuNP)-bound polystyrene (PS) microparticles. Raman spectra obtained in bulk aqueous solution under static conditions showed that the detection sensitivity of 4-ATP using AuNP-bound PS microparticles was approximately twice that achieved with citrate-stabilized AuNPs or biotin-modified AuNPs.

View Article and Find Full Text PDF

Titanium dioxide nanoparticles as a promising tool for efficient separation of trace DNA via phosphate-mediated desorption.

Mikrochim Acta

September 2025

Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 Changsheng West Road, Hengyang, 421001, Hunan, China.

We systematically evaluated the DNA adsorption and desorption efficiencies of several nanoparticles. Among them, titanium dioxide (TiO₂) nanoparticles (NPs), aluminum oxide (Al₂O₃) NPs, and zinc oxide (ZnO) NPs exhibited strong DNA-binding capacities under mild conditions. However, phosphate-mediated DNA displacement efficiencies varied considerably, with only TiO₂ NPs showing consistently superior performance.

View Article and Find Full Text PDF

Deep Learning-Assisted Organogel Pressure Sensor for Alphabet Recognition and Bio-Mechanical Motion Monitoring.

Nanomicro Lett

September 2025

Nanomaterials & System Lab, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, Republic of Korea.

Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring, clinical diagnosis, and robotic applications. Nevertheless, it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility, adhesion, self-healing, and environmental robustness with excellent sensing metrics. Herein, we report a multifunctional, anti-freezing, self-adhesive, and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes (CoN CNT) embedded in a polyvinyl alcohol-gelatin (PVA/GLE) matrix.

View Article and Find Full Text PDF