Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The impact of shifting disturbance regimes on soil carbon (C) storage is a key uncertainty in global change research. Wildfires in coniferous forests are becoming more frequent in many regions, potentially causing large C emissions. Repeated low-intensity prescribed fires can mitigate wildfire severity, but repeated combustion may decrease soil C unless compensatory responses stabilize soil organic matter. Here, we tested how 30 years of decadal prescribed burning affected C and nitrogen (N) in plants, detritus, and soils in coniferous forests in the Sierra Nevada mountains, USA. Tree basal area and litter stocks were resilient to fire, but fire reduced forest floor C by 77% (-36.4 Mg C/ha). In mineral soils, fire reduced C that was free from minerals by 41% (-4.4 Mg C/ha) but not C associated with minerals, and only in depths ≤ 5 cm. Fire also transformed the properties of remaining mineral soil organic matter by increasing the proportion of C in a pyrogenic form (from 3.2% to 7.5%) and associated with minerals (from 46% to 58%), suggesting the remaining soil C is more resistant to decomposition. Laboratory assays illustrated that fire reduced microbial CO respiration rates by 55% and the activity of eight extracellular enzymes that degrade cellulosic and aromatic compounds by 40-66%. Lower decomposition was correlated with lower inorganic N (-49%), especially ammonium, suggesting N availability is coupled with decomposition. The relative increase in forms of soil organic matter that are resistant to decay or stabilized onto mineral surfaces, and the associated decline in decomposition suggest that low-intensity fires may promote mineral soil C storage in pools with long mean residence times in coniferous forests.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.15648DOI Listing

Publication Analysis

Top Keywords

coniferous forests
16
soil organic
16
organic matter
16
fire reduced
12
soil
8
associated minerals
8
mineral soil
8
fire
5
low-intensity frequent
4
frequent fires
4

Similar Publications

Trees harbor large stores of nonstructural carbohydrates, some of which are quite old (> 10 yr), yet we know little of how these older stores may be used for woody growth. Crucially, the use of old carbohydrates during cellulose biosynthesis could confound climate reconstructions that rely on tree ring stable isotope ratios. We analyzed tree-ring cellulose ΔC and δC in earlywood of two pine species from montane forests in western North America using tree rings produced during the radiocarbon bomb pulse (1966-1980).

View Article and Find Full Text PDF

Vitamin D is critically important for sustainable human health, and the rising prevalence of deficiency-related diseases has increased interest in natural sources. This study explores the potential of epiphytic lichen-forming fungi, known for their unique metabolites, as a novel biosource of vitamin D for pharmaceutical and nutraceutical applications. Fourteen epiphytic lichen species were collected using a stratified sampling method from four mountainous forests in the Marmara Region of Türkiye.

View Article and Find Full Text PDF

Multi-component tree biomass approach to estimate litterfall Hg deposition in a warm-temperate coniferous forest in southern Europe.

Environ Res

September 2025

Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias,32004 Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo, Campus Auga, 32004 Ourense, Spain. Electronic address: edjuanca@uv

Terrestrial ecosystems are a key component in the biogeochemical cycle of Hg. About 50% of atmospheric Hg is captured in the system because of the ability of vegetation to retain and subsequently transfer it to the soil surface through litterfall. In a stand dominated by Scots pine (Pinus sylvestris), the widest spatially distributed tree species in the northern hemisphere and the second worldwide, this two-year study evaluated monthly the litterfall Hg deposition fluxes (FHg) through all litterfall fractions involved (needles, twigs, bark, miscellaneous, and male inflorescences).

View Article and Find Full Text PDF

Context: Spruce budworm (, Clem, SBW) is the largest defoliator of boreal and mixedwood forests in North America. Its impact is directly linked to the quality and availability of primary host species such as balsam fir (, (L.) Mill.

View Article and Find Full Text PDF

A wide range of microorganisms, including endophytes, frequently interact with forest trees. The role of endophytes in industrial conifers has not been fully investigated. The Yezo spruce is widely used for logging in Russia and Japan.

View Article and Find Full Text PDF