Publications by authors named "Katerina Georgiou"

Acceptance and Commitment Therapy (ACT) is a third wave cognitive-behavioral approach with demonstrated effectiveness in treating substance use disorders (SUDs). ACT aims to improve psychological flexibility via 6 core processes: acceptance, cognitive defusion, present-moment awareness, self-as-context, values, and committed action. Through these processes, ACT encourages adaptive and values-congruent behaving rather than substance use as a coping strategy.

View Article and Find Full Text PDF

Increasing fine root carbon (FRC) inputs into soils has been proposed as a solution to increasing soil organic carbon (SOC). However, FRC inputs can also enhance SOC loss through priming. Here, we tested the broad-scale relationships between SOC and FRC at 43 sites across the US National Ecological Observatory Network.

View Article and Find Full Text PDF

Background: There is no published evidence to support the efficacy of any digital vaping cessation program for young adults (YAs) at differing levels of readiness to quit. In this pilot randomized controlled trial, we evaluated the preliminary acceptability and efficacy of a program for vaping cessation based on acceptance and commitment therapy (ACT on Vaping), delivered via a smartphone app and text messaging.

Methods: YAs age 18-30 (n=61) were randomized 1:1 to ACT on Vaping (n=31) or incentivized text message control (n=30).

View Article and Find Full Text PDF

Managing soils to increase organic carbon storage presents a potential opportunity to mitigate and adapt to global change challenges, while providing numerous co-benefits and ecosystem services. However, soils differ widely in their potential for carbon sequestration, and knowledge of biophysical limits to carbon accumulation may aid in informing priority regions. Consequently, there is great interest in assessing whether soils exhibit a maximum capacity for storing organic carbon, particularly within organo-mineral associations given the finite nature of reactive minerals in a soil.

View Article and Find Full Text PDF

Microbial carbon use efficiency (CUE) is a key microbial trait affecting soil organic carbon (SOC) dynamics. However, we lack a unified and predictive understanding of the mechanisms underpinning the temperature response of microbial CUE, and, thus, its impacts on SOC storage in a warming world. Here, we leverage three independent soil datasets (n = 618 for microbial CUE; n = 591 and 660 for heterotrophic respiration) at broad spatial scales to investigate the microbial thermal response and its implications for SOC responses to warming.

View Article and Find Full Text PDF

Microbial carbon use efficiency (CUE) affects the fate and storage of carbon in terrestrial ecosystems, but its global importance remains uncertain. Accurately modeling and predicting CUE on a global scale is challenging due to inconsistencies in measurement techniques and the complex interactions of climatic, edaphic, and biological factors across scales. The link between microbial CUE and soil organic carbon relies on the stabilization of microbial necromass within soil aggregates or its association with minerals, necessitating an integration of microbial and stabilization processes in modeling approaches.

View Article and Find Full Text PDF

One of the largest uncertainties in the terrestrial carbon cycle is the timing and magnitude of soil organic carbon (SOC) response to climate and vegetation change. This uncertainty prevents models from adequately capturing SOC dynamics and challenges the assessment of management and climate change effects on soils. Reducing these uncertainties requires simultaneous investigation of factors controlling the amount (SOC abundance) and duration (SOC persistence) of stored C.

View Article and Find Full Text PDF

Tooth autotransplantation is one of the methods used for tooth loss rehabilitation in children. Premolars are usually used as autotransplants requiring esthetic alterations. The purpose of this paper is to present an innovative, alternative and inexpensive way to restore auto-transplanted teeth using the crown of the tooth of the recipient site.

View Article and Find Full Text PDF
Article Synopsis
  • Changes in soil organic carbon (SOC) storage significantly impact global climate, making it crucial to identify soils that can easily gain or lose SOC.
  • Many studies show that SOC-poor soils seem to accumulate carbon more effectively than SOC-rich soils, but this may be due to statistical artifacts rather than actual trends.
  • To improve understanding, researchers suggest correcting for statistical effects and avoiding normalized metrics when analyzing SOC changes, which will lead to more accurate scientific insights for environmental management.
View Article and Find Full Text PDF

Soil is the largest terrestrial reservoir of organic carbon and is central for climate change mitigation and carbon-climate feedbacks. Chemical and physical associations of soil carbon with minerals play a critical role in carbon storage, but the amount and global capacity for storage in this form remain unquantified. Here, we produce spatially-resolved global estimates of mineral-associated organic carbon stocks and carbon-storage capacity by analyzing 1144 globally-distributed soil profiles.

View Article and Find Full Text PDF

From hillslope to small catchment scales (< 50 km), soil carbon management and mitigation policies rely on estimates and projections of soil organic carbon (SOC) stocks. Here we apply a process-based modeling approach that parameterizes the MIcrobial-MIneral Carbon Stabilization (MIMICS) model with SOC measurements and remotely sensed environmental data from the Reynolds Creek Experimental Watershed in SW Idaho, USA. Calibrating model parameters reduced error between simulated and observed SOC stocks by 25%, relative to the initial parameter estimates and better captured local gradients in climate and productivity.

View Article and Find Full Text PDF

There is growing interest in aligning the wildlife conservation and restoration agenda with climate change mitigation goals. However, the presence of large herbivores tends to reduce aboveground biomass in some open-canopy ecosystems, leading to the possibility that large herbivore restoration may negatively influence ecosystem carbon storage. Belowground carbon storage is often ignored in these systems, despite the wide recognition of soils as the largest actively-cycling terrestrial carbon pool.

View Article and Find Full Text PDF

Vaccine hesitancy is a complex health problem, with various factors involved including the influence of an individual's network. According to the Social Contagion Theory, attitudes and behaviours of an individual can be contagious to others in their social networks. This scoping review aims to collate evidence on how attitudes and vaccination uptake are spread within social networks.

View Article and Find Full Text PDF

The impact of shifting disturbance regimes on soil carbon (C) storage is a key uncertainty in global change research. Wildfires in coniferous forests are becoming more frequent in many regions, potentially causing large C emissions. Repeated low-intensity prescribed fires can mitigate wildfire severity, but repeated combustion may decrease soil C unless compensatory responses stabilize soil organic matter.

View Article and Find Full Text PDF
Article Synopsis
  • The amount of carbon dioxide (CO₂) in the air is going up, which helps plants grow better and use water more efficiently.
  • This growth can lead to more plants and soil that store carbon, which might help slow down climate change.
  • However, figuring out how plants and soil react to this extra CO₂ is complicated, and while there's strong evidence of increased carbon storage, it's hard to know exactly how much it helps and what other factors are at play.
View Article and Find Full Text PDF

The original PDF version of this Article contained an error in Table 1. On the right-hand side of the third row, the third equation was missing a β as an exponent on the first CB. This has now been corrected in the PDF version of the Article.

View Article and Find Full Text PDF

Climatic, atmospheric, and land-use changes all have the potential to alter soil microbial activity, mediated by changes in plant inputs. Many microbial models of soil organic carbon (SOC) decomposition have been proposed recently to advance prediction of climate and carbon (C) feedbacks. Most of these models, however, exhibit unrealistic oscillatory behavior and SOC insensitivity to long-term changes in C inputs.

View Article and Find Full Text PDF

Stem cell differentiation can be highly sensitive to mechanical inputs from the extracellular matrix (ECM). Identifying temporal windows during which lineage commitment responds to ECM stiffness, and the signals that mediate these decisions, would advance both mechanistic insights and translational efforts. To address these questions, we investigate adult neural stem cell (NSC) fate commitment using an oligonucleotide-crosslinked ECM platform that for the first time offers dynamic and reversible control of stiffness.

View Article and Find Full Text PDF

Many studies have shown that elevated atmospheric CO2 concentrations result in increased plant carbon inputs to soil that can accelerate the decomposition of native soil organic matter, an effect known as priming. Consequently, it is important to understand and quantify the priming effect for future predictions of carbon-climate feedbacks. There are potential pitfalls, however, when representing this complex system with a simple, first-order model.

View Article and Find Full Text PDF

Polymersomes, polymeric vesicles that self-assemble in aqueous solutions from block copolymers, have been avidly investigated in recent years as potential drug delivery agents. Past work has highlighted peptide-functionalized polymersomes as a highly promising targeted delivery system. However, few reports have investigated the ability of polymersomes to operate as gene delivery agents.

View Article and Find Full Text PDF