98%
921
2 minutes
20
The role of natural selection in the evolution of trait complexity can be characterized by testing hypothesized links between complex forms and their functions across species. Predatory venoms are composed of multiple proteins that collectively function to incapacitate prey. Venom complexity fluctuates over evolutionary timescales, with apparent increases and decreases in complexity, and yet the causes of this variation are unclear. We tested alternative hypotheses linking venom complexity and ecological sources of selection from diet in the largest clade of front-fanged venomous snakes in North America: the rattlesnakes, copperheads, cantils, and cottonmouths. We generated independent transcriptomic and proteomic measures of venom complexity and collated several natural history studies to quantify dietary variation. We then constructed genome-scale phylogenies for these snakes for comparative analyses. Strikingly, prey phylogenetic diversity was more strongly correlated to venom complexity than was overall prey species diversity, specifically implicating prey species' divergence, rather than the number of lineages alone, in the evolution of complexity. Prey phylogenetic diversity further predicted transcriptomic complexity of three of the four largest gene families in viper venom, showing that complexity evolution is a concerted response among many independent gene families. We suggest that the phylogenetic diversity of prey measures functionally relevant divergence in the targets of venom, a claim supported by sequence diversity in the coagulation cascade targets of venom. Our results support the general concept that the diversity of species in an ecological community is more important than their overall number in determining evolutionary patterns in predator trait complexity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8092465 | PMC |
http://dx.doi.org/10.1073/pnas.2015579118 | DOI Listing |
Toxicon
September 2025
Grupo Infección e Inmunidad, Departamento de Ciencias Básicas, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia. Electronic address:
Scorpion venom is a complex biochemical arsenal with significant ecological and biomedical importance. Advances in transcriptomic techniques have provided valuable insights into the composition and functional diversity of venoms. This systematic review analyzes transcriptomic research conducted between 2010 and 2024, focusing on methodologies such as Expressed Sequence Tags (ESTs) and Next-Generation Sequencing (NGS).
View Article and Find Full Text PDFToxins (Basel)
August 2025
Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia.
Australian elapid snakes possess potent procoagulant venoms, capable of inducing severe venom-induced consumption coagulopathy (VICC) in snakebite victims through rapid activation of the coagulation cascade by converting the FVII and prothrombin zymogens into their active forms. These venoms fall into two mechanistic categories: FXa-only venoms, which hijack host factor Va, and FXa:FVa venoms, containing a complete venom-derived prothrombinase complex. While previous studies have largely focused on human plasma, the ecological and evolutionary drivers behind prey-selective venom efficacy remain understudied.
View Article and Find Full Text PDFToxins (Basel)
July 2025
College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea.
Animal venoms are complex biochemical secretions rich in highly potent and selective bioactive molecules, including peptides, enzymes, and small organic compounds. Once associated primarily with toxicity, these venoms are now recognized as a promising source of therapeutic agents for a wide range of medical conditions. This review provides a comprehensive analysis of the pharmacological potential of venom-derived compounds, highlighting their mechanisms of action, such as ion channel modulation, receptor targeting, and enzyme inhibition.
View Article and Find Full Text PDFToxins (Basel)
August 2025
Institute of Biosciences, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil.
In Brazil, the annual scorpion sting cases surpass those of other neglected tropical diseases, highlighting a significant public health issue. The severity of scorpion envenomation relates to the venom's rapid action, complex composition, species identification challenges, and limited antivenom availability. This work aimed to characterize the venom of through proteomic, enzymatic, and biological analyses while also assessing its reactivity to anti-scorpion antivenom.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2025
Department of Chemical and Biological Science and Engineering, United States Military Academy, West Point, New York 10996, United States.
Pore-forming agents can bind at the interface of and permeabilize cell membranes. Understanding and mitigating this mechanism is pragmatic for developing bionanomaterials and strategies against biologically active species that target the cell membrane. Herein, we explore the molecular interactions between melittin, a membrane-active pore-forming peptide from honeybee venom, and a series of structurally similar polyphenols.
View Article and Find Full Text PDF