Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: The water to powder ratio and method of mixing is important for the properties of hydraulic cements. For this purpose a number of clinicians prefer premixed materials. Dental manufacturing companies provide predosed materials, however the manufacturer instructions are not always adhered to. The aim of this research is to investigate physical and chemical alterations of the tricalcium silicate-based cement Biodentine when manipulated according to the manufacturer's instructions (control) or changing the doses and mixing of the material components.

Methods: 6 groups were constituted according to different mixing and dosing of powder and liquid. The hydrated cements were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). Calcium ion concentration of the leachate was also investigated. Assessment of the physical characteristics included setting time and microhardness.

Results: Microstructural differences were visible only in the Biodentine mixed manually with water, in which early hydration rate was also affected, with lower calcium ion release. Increase of Biodentine liquid increased the calcium ion release, but also increased the setting time. Manual manipulation required more liquid (both water and Biodentine liquid) added to the mixture to guarantee a similar consistency to the control. A decrease in setting time was also noted. All groups showed higher values of microhardness at 24 h compared to the freshly set materials. In the freshly set materials, there was an overall decrease in microhardness in all groups when compared to group control, particularly significant when increasing the dosage of Biodentine liquid.

Significance: When mixing Biodentine, altering the mixing procedure in terms of type and amount of liquid added to the powder and mixing device chosen has an effect on the physical, chemical and mechanical characteristics and surface topography of the material, when compared to Biodentine mixed according to the manufacturer's recommendations. Hence, the manufacturer's instructions should be strictly followed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dental.2021.03.021DOI Listing

Publication Analysis

Top Keywords

physical chemical
12
calcium ion
12
setting time
12
biodentine
8
manufacturer's instructions
8
biodentine mixed
8
ion release
8
biodentine liquid
8
freshly set
8
set materials
8

Similar Publications

Recent advances in presodiation strategies for hard carbon anodes in sodium-ion batteries.

Chem Commun (Camb)

September 2025

Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China.

Hard carbon (HC) has emerged as a promising anode material for sodium-ion batteries (SIBs) owing to its low cost, abundant renewable resources, and high specific capacity. However, its practical application is significantly hindered by the severe initial irreversible capacity loss resulting from sodium consumption during the first cycle. To address this issue, a variety of presodiation strategies have been developed to compensate for the sodium loss and improve the initial coulombic efficiency.

View Article and Find Full Text PDF

Ionic liquids (ILs) are a class of organic salts with melting points below 100°C. Owing to their unique chemical and physical properties, they are used as solvents and catalysts in various chemical transformations, progressively replacing common volatile organic solvents (VOCs) in green synthetic applications. However, their intrinsic ionic nature can restrict the use of mass spectrometric techniques to monitor the time progress of a reaction occurring in an IL medium, thus preventing one from following the formation of the reaction products or intercepting the reaction intermediates.

View Article and Find Full Text PDF

Ultrasonic pulse repetition rates triggering escape responses of a moth pest.

Pest Manag Sci

September 2025

Laboratory of Applied Entomology, Graduate School of Horticulture, Chiba University, Chiba, Japan.

Background: The coevolutionary arms race between echolocating bats and tympanate moths has driven the evolution of ultrasound-mediated escape behaviors in moths. Bat-emitted ultrasonic pulses vary in sound intensity and temporal structure, with pulse repetition rate (PRR) which intrinsically encode critical information about predation risk, i.e.

View Article and Find Full Text PDF

The role of biochar in combating microplastic pollution: a bibliometric analysis in environmental contexts.

Beilstein J Nanotechnol

August 2025

Faculty of Engineering and Technology, Saigon University, 273 An Duong Vuong Street, Cho Quan Ward, Ho Chi Minh City 700000, Vietnam.

This study employs a bibliometric analysis using CiteSpace to explore research trends on the impact of biochar on microplastics (MPs) in soil and water environments. In agricultural soils, MPs reduce crop yield, alter soil properties, and disrupt microbial diversity and nutrient cycling. Biochar, a stable and eco-friendly material, has demonstrated effectiveness in mitigating these effects by restoring soil chemistry, enhancing microbial diversity and improving crop productivity.

View Article and Find Full Text PDF

Introduction: is a spiral-shaped Gram-negative, enterohepatic bacterium classified as a conditional pathogen (pathogenicity group 2). It is known to cause bacteremia and a variety of other diseases in humans. In particular, has been shown to impair intracellular cholesterol metabolism when interacting with macrophages, leading to foam cell formation.

View Article and Find Full Text PDF