Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Evidence indicates that macrophages play an important role in the immune system. Therefore, research involving inflammatory and oxidative stress responses in macrophages is of great significance. Many factors contribute to inflammation and oxidative stress, including Salmonella. We investigated the effect of the miR-139-5p/TRAF6 axis on the inflammatory and oxidative stress responses of Salmonella -infected macrophages. Our findings revealed that miR-139-5p decreased IL-1β and TNF-α levels to inhibit Salmonella-induced inflammatory responses in the RAW264.7 macrophage cell line. Furthermore, miR-139-5p inhibited Salmonella-induced oxidative stress by strengthening SOD, CAT and GSH-PX activity, as well as lowering the malondialdehyde level in the RAW264.7 macrophages cell line. Subsequently, it was verified that TRAF6 was a downstream target of miR-139-5p in RAW264.7 cells. Rescue assays indicated that the over-expression of miR-139-5p inhibits the effects of TRAF6 on inflammatory and oxidative stress responses including Salmonella infection in RAW264.7 cells. To our knowledge, this study is the first to verify that miR-139-5p inhibits inflammatory and oxidative stress responses of Salmonella-infected macrophages through regulating TRAF6. This discovery may offer new insights on inflammatory and oxidative stress responses in macrophages.

Download full-text PDF

Source
http://dx.doi.org/10.1093/femspd/ftab018DOI Listing

Publication Analysis

Top Keywords

oxidative stress
32
inflammatory oxidative
24
stress responses
24
inhibits inflammatory
8
oxidative
8
stress
8
responses salmonella-infected
8
salmonella-infected macrophages
8
responses macrophages
8
including salmonella
8

Similar Publications

Heart failure (HF) is a multifactorial and pathophysiological complex syndrome, involving not only neurohormonal activation but also oxidative stress, chronic low-grade inflammation, and metabolic derangements. Central to the cellular defence against oxidative damage is nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor that orchestrates antioxidant and cytoprotective responses. Preclinical in vitro and in vivo studies reveal that Nrf2 signalling is consistently impaired in HF, contributing to the progression of myocardial dysfunction.

View Article and Find Full Text PDF

Background: Free radicals play a key role in spinal cord injury and curcumin has the potential to act as an antioxidant agent. Controlled delivery of curcumin can be achieved through encapsulation in bovine serum albumin to form nanoparticles, and acellular scaffold can bridge lesions and improve axonal growth in spinal cord injury.

Objective: In this study, we evaluated the antioxidant effects of the scaffold containing curcumin nanoparticles in the unilateral spinal cord injury model in male rats.

View Article and Find Full Text PDF

Silkworms are emerging as a sustainable food source to address global food security, with their proteins recognized for nutritional and medicinal benefits. However, the impact of silkworm oil on immunological and pharmacological effects remains unexplored. This study explores the effects of the muga (Antheraea assamensis Helfer) silkworm pupal oil fraction (MP) on palmitic acid (PA) induced hepatic steatosis, inflammation, and oxidative stress.

View Article and Find Full Text PDF

Polyphenols, rich in phenolic structures, are widely found in plants and known for disturbing the cellular oxidative stress and regulating the signal pathways of tumor proliferation and metastasis, making them valuable in cancer therapy. Polyphenols display high adherence due to the presence of phenolic hydroxyl groups, which enables the formation of covalent and non-covalent interactions with different materials. However, nonspecific adhesion of polyphenols carries significant risks in applications as polyphenols might adhere to proteins and polysaccharides in the bloodstream or gastrointestinal tract, leading to thrombosis and lithiasis.

View Article and Find Full Text PDF

Limosilactobacillus fermentum CRL2085, isolated from feedlot cattle rations, displayed high efficiency as a probiotic when administered to animals. A comprehensive genomic analysis was performed to elucidate the genetic basis underlying its probiotic potential. Fifteen genomic islands and CRISPR-Cas elements were identified in its genome.

View Article and Find Full Text PDF