98%
921
2 minutes
20
Objective: To investigate the effects of postconditioning ischemia on the expressions of the hippocampus neuron autophagy-related proteins LC3-II and Beclin-1 in rats following cerebral ischemia reperfusion.
Methods: A total of 128 male Sprague-Dawley rats were randomly divided into 4 groups: control, cerebral ischemia-reperfusion (IR), cerebral ischemia post-conditioning group (IP), and PI3K/Akt inhibitor (LY294002). The rat cerebral ischemia model was established by the improved Pulsinelli four vessel occlusion method. The durations across the platform and escape latent period were recorded using the water maze experiment. The changes in cell morphology and the number of surviving hippocampal neurons were detected by hematoxylin-eosin (HE) staining. The cells with Beclin-1 and LC3-II in the hippocampal region were detected by immunohistochemical staining and Western blotting.
Results: When compared with the IR at 48 and 72 h, the number of platform passes increased and the escape latency time was shortened. Consequently, the HE staining detected positive cells with LC3-II and Beclin-1 increased in number at each time point in immunohistochemistry and the expressions of the LC3-II and Beclin-1 proteins were improved in the IP (P < 0.05).
Conclusions: Cerebral ischemic post-conditioning promoted the expressions of autophagy-related proteins LC3-II and Beclin-1 while relieving the injuries caused by cerebral ischemia reperfusion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7874818 | PMC |
http://dx.doi.org/10.1515/biol-2019-0020 | DOI Listing |
Arch Pharm Res
September 2025
Department of Biosciences, JIS University, 81, Nilgunj Road, Agarpara, Kolkata, West Bengal, 700109, India.
Bacoside A (BCA), a triterpenoid saponin isolated from Bacopa monnieri, exhibits diverse pharmacological properties, including neuroprotective, hepatoprotective, anti-stress, anti-inflammatory, and anti-ulcer effects. In the present study, BCA demonstrates pronounced anticancer activity against K562 chronic myelogenous leukemia (CML) cells by modulating autophagy-apoptosis dynamics. BCA induces dose- and time-dependent cytotoxicity in K562 cells while sparing normal human peripheral blood mononuclear cells (hPBMCs) and Vero cells, indicating therapeutic selectivity.
View Article and Find Full Text PDFBiochem Biophys Rep
December 2025
Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
Background: Acute myeloid leukemia (AML) involves uncontrolled proliferation of myeloid progenitor cells and carries a poor prognosis. The PI3K/AKT/mTOR pathway plays a key role in AML pathogenesis by regulating cancer cell proliferation and survival. This study investigates the effects of inhibiting the PI3K/AKT/mTOR pathway on autophagy in AML cell lines, aiming to support targeted therapy development that modulates autophagy.
View Article and Find Full Text PDFJ Cell Mol Med
August 2025
Institute of Nutrition, College of Health Care, China Medical University, Taichung, Taiwan.
Dihydromikanolide (DHK) is a natural product in Mikania species. We examined the anti-inflammatory molecular mechanisms of DHK employing in vitro RAW264.7 macrophages and in vivo BALB/c mice under LPS/ATP stimulation.
View Article and Find Full Text PDFAdv Pharmacol Pharm Sci
August 2025
Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand.
Alpha-mangostin (α-M), a xanthone derivative with known antioxidative properties, has demonstrated a protective effect on neurons under oxidative stress, a key factor in the pathogenesis of Parkinson's disease (PD). However, its impact on mitochondrial integrity and autophagy in PD remains insufficiently understood. Therefore, the present study aimed to investigate the role of α-M in regulating defective mitochondrial proteins and its influence on the mTOR pathway, both of which are critical in the regulation of autophagy.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
September 2025
Nephrology Department, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China.
Diabetic kidney disease (DKD) is a common complication of diabetes, often characterized by podocyte injury, proteinuria, and eventual renal failure. Sinomenine hydrochloride (SH), an active component derived from traditional Chinese medicine, is clinically effective in treating kidney diseases. This study investigates the protective effects of SH on podocytes under high-glucose conditions and its mechanism of action.
View Article and Find Full Text PDF