98%
921
2 minutes
20
Clonal outbreaks due to azole-resistant (ARCP) isolates have been reported in numerous studies, but the environmental niche of such isolates has yet to be defined. Herein, we aimed to identify the environmental niche of ARCP isolates causing unremitting clonal outbreaks in an adult ICU from a Brazilian cancer referral center. sensu stricto isolates recovered from blood cultures, pericatheter skins, healthcare workers (HCW), and nosocomial surfaces were genotyped by multilocus microsatellite typing (MLMT). Antifungal susceptibility testing was performed by the EUCAST (European Committee for Antimicrobial Susceptibility Testing) broth microdilution reference method and was sequenced to determine the azole resistance mechanism. Approximately 68% of isolates were fluconazole-resistant (76/112), including pericatheter skins (3/3, 100%), blood cultures (63/70, 90%), nosocomial surfaces (6/11, 54.5%), and HCW's hands (4/28, 14.2%). MLMT revealed five clusters: the major cluster contained 88.2% of ARCP isolates (67/76) collected from blood (57/70), bed (2/2), pericatheter skin (2/3), from carts (3/7), and HCW's hands (3/27). ARCP isolates were associated with a higher 30 day crude mortality rate (63.8%) than non-ARCP ones (20%, = 0.008), and resisted two environmental decontamination attempts using quaternary ammonium. This study for the first time identified ARCP isolates harboring the Erg11-Y132F mutation from nosocomial surfaces and HCW's hands, which were genetically identical to ARCP blood isolates. Therefore, it is likely that persisting clonal outbreak due to ARCP isolates was fueled by environmental sources. The resistance of Y132F ARCP isolates to disinfectants, and their potential association with a high mortality rate, warrant vigilant source control using effective environmental decontamination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8066986 | PMC |
http://dx.doi.org/10.3390/jof7040259 | DOI Listing |
Acta Crystallogr F Struct Biol Commun
July 2025
Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
Clinical and environmental isolates of Stenotrophomonas maltophilia produce an enterobactin-like siderophore that promotes bacterial growth under low-iron conditions. Although prior mutational and bioinformatic analyses indicated that most of the enzymes encoded by the S. maltophilia entCEBB'FA locus are suitably reminiscent of their counterparts in Escherichia coli and other bacteria, Stenotrophomonas EntB was unusual.
View Article and Find Full Text PDFJ Fungi (Basel)
March 2021
Laboratory of Medical Mycology (LIM-53), Instituto de Medicina Tropical e Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil.
Clonal outbreaks due to azole-resistant (ARCP) isolates have been reported in numerous studies, but the environmental niche of such isolates has yet to be defined. Herein, we aimed to identify the environmental niche of ARCP isolates causing unremitting clonal outbreaks in an adult ICU from a Brazilian cancer referral center. sensu stricto isolates recovered from blood cultures, pericatheter skins, healthcare workers (HCW), and nosocomial surfaces were genotyped by multilocus microsatellite typing (MLMT).
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2016
Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke St., W., Montreal, H4B 1R6, Quebec, Canada; Groupe de Recherche Axé sur la Structure des Protéines (GRASP), Canada. Electronic address:
Bacteria utilize small-molecule iron chelators called siderophores to support growth in low-iron environments. The Escherichia coli catecholate siderophore enterobactin is synthesized in the cytoplasm upon iron starvation. Seven enzymes are required for enterobactin biosynthesis: EntA-F, H.
View Article and Find Full Text PDFBiochemistry
November 2005
Department of Chemistry, University of Illinois, Urbana, Illinois 61801, USA.
For the direct interrogation of peptides harboring covalently modified serines in nonribosomal peptide synthetases, streamlined methodologies described here employ proteolysis and reporter-coenzyme A analogues of four types. The chromophoric and fluorescent coenzyme A analogues pyrene-maleimidyl-S-CoA and BODIPY-FL-N-(2-aminoethyl)maleimidyl-S-CoA were enzymatically loaded onto the active site serines harbored in the ArCP, PCP1, and PCP2 thiolation domains of PchE and PchF, the nonribosomal peptide synthetases responsible for the biosynthesis of the siderophore pyochelin. During the chromatographic separation of cyanogen bromide digests, observation of the absorbance (at 338 and 504 nm) or fluorescence (after irradiation at 365 nm) enabled the selective detection of peptides containing each active site serine.
View Article and Find Full Text PDFArch Microbiol
January 2005
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
Phosphopantetheinyl transferases (PPTases) catalyze the essential post-translational activation of carrier proteins from fatty acid synthetases (FASs) in primary metabolism and polyketide synthetases (PKSs) and non-ribosomal polypeptide synthetases (NRPSs) in secondary metabolism. Bacteria typically harbor one PPTase specific for carrier proteins of primary metabolism (ACPS-type PPTases) and at least one capable of modifying carrier proteins involved in secondary metabolism (Sfp-type PPTases). Anguibactin, an important virulent factor in Vibrio anguillarum serotype O1, has been reported to be synthesized by a nonribosomal peptide synthetases (NRPS) system encoded on a 65-kb virulent plasmid pJM1 from strain 775 of V.
View Article and Find Full Text PDF