A Terpyridine-Fe-Based Coordination Polymer Film for On-Chip Micro-Supercapacitor with AC Line-Filtering Performance.

Polymers (Basel)

Frontiers Science Center for Transformative Molecules, The Meso-Entropy Matter Lab, The State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240,

Published: March 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The preparation of redox-active, ultrathin polymer films as the electrode materials represents a major challenge for miniaturized flexible electronics. Herein, we demonstrated a liquid-liquid interfacial polymerization approach to a coordination polymer films with ultrathin thickness from tri(terpyridine)-based building block and iron atoms. The as-synthesized polymer films exhibit flexible properties, good redox-active and narrow bandgap. After directly transferred to silicon wafers, the on-chip micro-supercapacitors of TpPB-Fe-MSC achieved the high specific capacitances of 1.25 mF cm at 50 mV s and volumetric energy density of 5.8 mWh cm, which are superior to most of semiconductive polymer-based micro-supercapacitor (MSC) devices. In addition, as-fabricated on-chip MSCs exhibit typical alternating current (AC) line-filtering performance (-71.3° at 120 Hz) and a short resistance-capacitance (RC) time (0.06 ms) with the electrolytes of PVA/LiCl. This study provides a simple interfacial approach to redox-active polymer films for microsized energy storage devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8037160PMC
http://dx.doi.org/10.3390/polym13071002DOI Listing

Publication Analysis

Top Keywords

polymer films
16
coordination polymer
8
line-filtering performance
8
polymer
5
terpyridine-fe-based coordination
4
polymer film
4
film on-chip
4
on-chip micro-supercapacitor
4
micro-supercapacitor line-filtering
4
performance preparation
4

Similar Publications

Cicada rib-inspired tough films through nanoconfined crystallization for use in acoustic transducers.

Sci Adv

September 2025

State Key Laboratory of Bioinspired Interfacial Materials Science, School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, P. R. China.

Acoustic transducers require films that demonstrate both toughness and fatigue resistance, presenting notable challenges when achieved through conventional nanoscale reinforcing strategies. Here, we found that the rib structure of a cicada's tymbal exhibits exceptional toughness and fatigue resistance, attributed to its unique architecture composed of alternating soft and stiff polymer layers. Inspired by this rib structure, we developed a robust artificial rib film (ARF) using a nanoconfined crystallization strategy that involves the deposition of soft polyethylene oxide and stiff phenol formaldehyde.

View Article and Find Full Text PDF

Spatially and temporally controlled drug delivery is an important field to address the limitations of conventional pharmaceutical administration. While many effective controlled drug delivery systems exist, the repertoire of systems that additionally present a beneficial mechanical environment to cells remains scarce. To address this, a comprehensive release study of fluorescein as a model drug, and the corticosteroid dexamethasone, from poly(-isopropylacrylamide)/polypyrrole (pNIPAM/PPy) conducting polymer hydrogels is presented within this study.

View Article and Find Full Text PDF

Prolonging All-Optical Molecular Electron Spin Coherence in the Tissue Transparency Window.

J Am Chem Soc

September 2025

Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States.

Coherent electron spin states within paramagnetic molecules hold significant potential for microscopic quantum sensing. However, all-optical coherence measurements amenable to high spatial and temporal resolution under ambient conditions remain a significant challenge. Here we conduct room-temperature, picosecond time-resolved Faraday ellipticity/rotation (TRFE/R) measurements of the electron spin decoherence time in [IrBr].

View Article and Find Full Text PDF

Wafer-scale integration of monolayer MoS residue-free support layer etching and angular strain suppression.

Nanoscale

September 2025

Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.

A crack-free and residue-free transfer technique for large-area, atomically-thin 2D transition metal dichalcogenides (TMDCs) such as MoS and WS is critical for their integration into next-generation electronic devices, either as channel materials replacing silicon or as back-end-of-line (BEOL) components in 3D-integrated nano-systems on CMOS platforms. However, cracks are frequently observed during the debonding of TMDCs from their growth substrates, and polymer or metal residues are often left behind after the removal of adhesive support layers wet etching. These issues stem from excessive angular strain accumulated during debonding and the incomplete removal of support layers due to their low solubility.

View Article and Find Full Text PDF

In the context of the importance of manganese β-diketonates as precursors for the preparation of manganese oxide thin films and nanostructured materials, we report synthetic protocols and pitfalls encountered in the preparation of a family of Mn(ii) complexes of two fluorinated β-diketonates, 1,1,1-trifluoroacetylacetonato- (tfac) and 1,1,1,5,5,5-hexafluoroacetylacetonato- (hfac). The synthetic conditions and crystal structures of six new complexes are reported, including a coordination polymer {K[Mn(tfac)]}, an unusual trinuclear complex Mn(tfac)(OH), and a series of mononuclear complexes with coordinated solvents tetrahydrofuran, 1,2-dimethoxyethane, water, and acetonitrile. The crystal structures of two known Mn(ii) complexes are also reported for completeness.

View Article and Find Full Text PDF