Beyond "Big Eaters": The Versatile Role of Alveolar Macrophages in Health and Disease.

Int J Mol Sci

REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany.

Published: March 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Macrophages act as immune scavengers and are important cell types in the homeostasis of various tissues. Given the multiple roles of macrophages, these cells can also be found as tissue resident macrophages tightly integrated into a variety of tissues in which they fulfill crucial and organ-specific functions. The lung harbors at least two macrophage populations: interstitial and alveolar macrophages, which occupy different niches and functions. In this review, we provide the latest insights into the multiple roles of alveolar macrophages while unraveling the distinct factors which can influence the ontogeny and function of these cells. Furthermore, we will highlight pulmonary diseases, which are associated with dysfunctional macrophages, concentrating on congenital diseases as well as pulmonary infections and impairment of immunological pathways. Moreover, we will provide an overview about different treatment approaches targeting macrophage dysfunction. Improved knowledge of the role of macrophages in the onset of pulmonary diseases may provide the basis for new pharmacological and/or cell-based immunotherapies and will extend our understanding to other macrophage-related disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8036607PMC
http://dx.doi.org/10.3390/ijms22073308DOI Listing

Publication Analysis

Top Keywords

alveolar macrophages
12
macrophages
8
multiple roles
8
pulmonary diseases
8
"big eaters"
4
eaters" versatile
4
versatile role
4
role alveolar
4
macrophages health
4
health disease
4

Similar Publications

Silicosis is a fatal occupational lung disease characterized by persistent inflammation and irreversible fibrosis. However, the pathogenesis of silicosis is currently unclear. In this study, a mouse model of silicosis was established by intranasal instillation of silica, and transcriptomic alterations in lung tissues were assessed by mRNA-sequencing.

View Article and Find Full Text PDF

Integrated network pharmacology and transcriptomics analysis elucidated the underlying mechanisms by which Pegaeophyton scapiflorum alleviated LPS-induced acute lung injury.

J Ethnopharmacol

September 2025

State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of TCM, Chengdu, 611137, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China. Electronic address:

Ethnopharmacological Relevance: Acute lung injury is one of the most fatal lung diseases and has a significant impact on mortality and morbidity. Currently, ALI treatment options remain limited. Pegaeophyton scapiflorum (DHJ) has been documented in Dumu Materia Medica, as clearing heat from the lungs, and are clinically used for respiratory disorders.

View Article and Find Full Text PDF

Unlabelled: While three major genetic alteration subsets, characterized by mutations in , and , are seminal in driving tumorigenesis in LUAD, their distinct effects on tumor cells and the tumor microenvironment are not fully understood. Here, we map critical oncogenic subset-specific vulnerabilities by identifying conserved cell-type-specific reprogrammings between human and mouse LUAD. Through harmonized scRNA-seq analysis of 57 human and 18 mouse specimens, we unveil that genetic alterations impose genotype-specific immune imprints on the tumor microenvironment: KRAS is associated with a transitional immune state, whereas STK11 and EGFR mutations define discrete and contrasting immune phenotypes.

View Article and Find Full Text PDF

Alveolar macrophages (AMs) are the first immune cells to encounter Mycobacterium tuberculosis (Mtb) in the lungs, but they frequently fail to eliminate this causative agent of tuberculosis (TB), allowing Mtb to persist or replicate. Interstitial macrophages (IMs) are recruited to restrict Mtb growth and limit immune evasion. While IMs have been implicated in the control of acute Mtb infection, their role during latent tuberculosis infection (LTBI) has not yet been explored.

View Article and Find Full Text PDF

Natural Polyphenol-Functionalized Schwann Cell-Derived Exosomes as a Temporal Neuromodulation Strategy for Diabetic Periodontitis Therapy.

ACS Nano

September 2025

Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.

An interactive bidirectional relationship between periodontitis and diabetes poses great challenges for the treatment of diabetic periodontitis in clinical practice. The hyperglycemic inflammatory periodontal microenvironment is characterized by oxidative damage, chronic invasive infection, excessive inflammation, unbalanced immunomodulation, progressive neuropathy, diabetic vasculopathy, and uncoupled bone resorption and formation responses. The neuromodulation strategy holds great potential to mediate and coordinate temporally the complex microenvironment for diabetic periodontal regeneration.

View Article and Find Full Text PDF