Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Neutralizing antibodies (NAbs) are effective in treating COVID-19 but the mechanism of immune protection is not fully understood. Here, we applied live bioluminescence imaging (BLI) to monitor the real-time effects of NAb treatment in prophylaxis and therapy of K18-hACE2 mice intranasally infected with SARS-CoV-2-nanoluciferase. We could visualize virus spread sequentially from the nasal cavity to the lungs and thereafter systemically to various organs including the brain, which culminated in death. Highly potent NAbs from a COVID-19 convalescent subject prevented, and also effectively resolved, established infection when administered within three days. In addition to direct Fab-mediated neutralization, Fc effector interactions of NAbs with monocytes, neutrophils and natural killer cells were required to effectively dampen inflammatory responses and limit immunopathology. Our study highlights that both Fab and Fc effector functions of NAbs are essential for optimal efficacy against SARS-CoV-2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8010726PMC
http://dx.doi.org/10.1101/2021.03.22.436337DOI Listing

Publication Analysis

Top Keywords

neutralizing antibodies
8
optimal efficacy
8
live imaging
4
imaging sars-cov-2
4
sars-cov-2 infection
4
infection mice
4
mice reveals
4
reveals neutralizing
4
antibodies require
4
require function
4

Similar Publications

AAV-mediated delivery of a broadly neutralizing anti-flavivirus antibody protects against dengue and Zika viruses in a mouse model.

Mol Ther

September 2025

Institute of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan,; Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 114201, Taiwan, ; Biomedical Translation Research Center, Academia Sinica, Taipei 115201, Taiwan,. Electronic address:

Flaviviruses contain many important human pathogens such as dengue virus (DENV) and Zika virus (ZIKV), for which effective and safe vaccines are still lacking, mainly because pre-existing cross-reactive non-neutralizing antibodies may exacerbate subsequent infections with related flaviviruses. To overcome this challenge, we explore Vectored ImmunoProphylaxis (VIP), which involves the passive transfer of protective antibody genes via viral vectors for in vivo expression. We utilized a recombinant adeno-associated virus (rAAV) to express a broad anti-flavivirus neutralizing human monoclonal antibody, bnAb 752-2C8, and tested its protection against four serotypes of DENV and ZIKV.

View Article and Find Full Text PDF

Can Sex-based Variations in the Immune Responses to AAV Gene Therapy Affect Safety and Efficacy? A Review of Current Understanding.

AAPS J

September 2025

Gene Transfer and Immunogenicity Branch, Division of Gene Therapy 2, Office of Gene Therapy, Office of Therapeutic Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, WO52 RM3124, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993-0002, USA.

As the field of gene therapy advances and as the importance of sex as a biological variable in shaping viral immune responses is recognized, the impact of sex on adeno-associated virus (AAV) vectors mediated gene therapies remain largely unexplored. Here we review current understanding of the immune response against AAV gene therapy as well as the knowledge of sex differences observed in viral responses. We discuss sex differences in innate immune mechanisms such as Toll-like receptor recognition and complement activation, as well as the functional responses of key immune cells such as dendritic cells, macrophages, and T/B cells that are involved in AAV immunogenicity.

View Article and Find Full Text PDF

Epizootic hemorrhagic disease virus (EHDV) causes severe disease in ruminants. We assessed the pathogenicity of the Chinese EHDV-7 isolate YN09 in mice lacking the type I interferon receptor and in sheep. In mice, YN09 infection resulted in 100% mortality, with histopathological lesions, viral replication, and immunoreactivity in multiple organs.

View Article and Find Full Text PDF

Evaluation of the C protein of BVDV as a vaccine candidate: Immunoprotective studies in mice.

Vet Microbiol

September 2025

College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, PR China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Techno

Bovine Viral Diarrhea Virus (BVDV) is a major pathogen associated with calf diarrhea and reproductive disorders in cattle. This study evaluated the immune-protective potential of a subunit vaccine based on the capsid C protein of the BVDV HNL-1 strain. In mice model, the C protein subunit vaccine exhibits a favorable safety and elicits robust immune-protective efficacy comparable to commercial inactivated vaccines.

View Article and Find Full Text PDF

Influenza A viruses remain a global health threat, yet no universal antibody therapy exists. Clinical programs have centered on neutralizing mAbs, only to be thwarted by strain specificity and rapid viral escape. We instead engineered three non-neutralizing IgG2a mAbs that target distinct, overlapping epitopes within the conserved N terminus of the M2 ectodomain (M2e).

View Article and Find Full Text PDF