98%
921
2 minutes
20
Glucuronic acid is a key component of the glycosaminoglycans (GAGs) Chrondroitin Sulfate (CS), Heparin/Heparan sulfate (HS) and Hyaluronic Acid (HA), as well an important metabolite derivative. In biological systems the carboxylate of uronic acids in GAGs is involved in important H-binding interactions, and the role of metal coordination, such as sodiated systems, has indications associated with a number of biological effects, and physiological GAG-related processes. In synthetic approaches to GAG fragments, thioglycoside intermediates, or derivatives from these, are commonly employed. Of the reported examples of sodium coordination in carbohydrates, 6-coordinate systems are usually observed often with water ligands involved, Herein we report an unexpected 5-coordinate sodiated GlcA crystal structure of the parent GlcA, but as a thioglycoside derivative, whose crystal coordination differs from previous examples, with no involvement of water as a ligand and containing a distorted trigonal bypramidal sodium with each GlcA having five of 6 oxygens sodium-coordinated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carres.2021.108281 | DOI Listing |
Mikrochim Acta
September 2025
College of Physical Science and Technology, Bohai University, Jinzhou, 121013, China.
Soda biscuit-like Ag-ZnO@ZIF-8 heterostructures were successfully synthesized using a secondary hydrothermal method for the first time, demonstrating exceptional ethylene glycol sensing performance. The sample (2-Methylimidazol (MeIm) concentration of 0.04 g) exhibits a remarkable response value of 1325.
View Article and Find Full Text PDFNat Cell Biol
September 2025
Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Durotaxis, cell migration along stiffness gradients, is linked to embryonic development, tissue repair and disease. Despite solid in vitro evidence, its role in vivo remains largely speculative. Here we demonstrate that durotaxis actively drives disease progression in vivo in mouse models of lung fibrosis and metastatic pancreatic cancer.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China.
Li-metal batteries promise ultrahigh energy density, but their application is limited by Li-dendrite growth. Theoretically, fluorine-containing anions such as bis(fluorosulfonyl)imide (FSI) in electrolytes can be reduced to form LiF-rich solid-electrolyte interphases (SEIs) with high Young's modulus and ionic conductivity that can suppress dendrites. However, the anions migrate toward the cathode during the charging process, accompanied by a decrease in the concentration of interfacial anions near the anode surface.
View Article and Find Full Text PDFEnviron Res
September 2025
State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China. Electronic address:
Recent interest in amendments derived from industrial by-products has highlighted their potential for both resource recycling and heavy metal remediation. Phosphate tailings (PT), primarily dolomite-based solid waste with low utilization rates, offer a promising yet underexplored solution. This study pioneers the thermal modification of PT into a novel amendment, thermally modified phosphate tailings (TPT), to assess its adsorption performance, underlying mechanisms, and effectiveness in immobilizing heavy metals in soils.
View Article and Find Full Text PDFWaste Manag
September 2025
Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; China Institute for Urban Governance, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:
As one of the major sources of greenhouse gas (GHG) emissions, the municipal solid waste (MSW) management system was regarded as a key contributor to the construction of a low-carbon society. Understanding the evolution of waste treatment facilities and the corresponding GHG emissions was essential for assessing the low-carbon competitiveness of local communities. In this study, facility-level data were used to estimate GHG emissions from the waste management system in the Yangtze River Delta (YRD) and analyze their temporal and spatial variations.
View Article and Find Full Text PDF