Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In degraded landscapes, recolonization by pioneer vegetation is often halted by the presence of persistent environmental stress. When natural expansion does occur, it is commonly due to the momentary alleviation of a key environmental variable previously limiting new growth. Thus, studying the circumstances in which expansion occurs can inspire new restoration techniques, wherein vegetation establishment is provoked by emulating natural events through artificial means. Using the salt-marsh pioneer zone on tidal flats as a biogeomorphic model system, we explore how locally raised sediment bed forms, which are the result of natural (bio)geomorphic processes, enhance seedling establishment in an observational study. We then conduct a manipulative experiment designed to emulate these facilitative conditions in order to enable establishment on an uncolonized tidal flat. Here, we attempt to generate raised growth-promoting sediment bed forms using porous artificial structures. Flume experiments demonstrate how these structures produce a sheltered hydrodynamic environment in which suspended sediment and seeds preferentially settle. The application of these structures in the field led to the formation of stable, raised sediment platforms and the spontaneous recruitment of salt-marsh pioneers in the following growing season. These recruits were composed primarily of the annual pioneering Salicornia genus, with densities of up to 140 individuals/m within the structures, a 60-fold increase over ambient densities. Lower abundances of five other perennial species were found within structures that did not appear elsewhere in the pioneer zone. Furthermore, recruits grew to be on average three times greater in mass inside of the structures than in the neighboring ambient environment. The success of this restoration design may be attributed to the combination of three factors: (1) enhanced seed retention, (2) suppressed mortality, and (3) accelerated growth rates on the elevated surfaces generated by the artificial structures. We argue that restoration approaches similar to the one shown here, wherein the conditions for natural establishment are actively mimicked to promote vegetation development, may serve as promising tools in many biogeomorphic ecosystems, ranging from coastal to arid ecosystems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8365657PMC
http://dx.doi.org/10.1002/eap.2333DOI Listing

Publication Analysis

Top Keywords

natural establishment
8
pioneer zone
8
raised sediment
8
sediment bed
8
bed forms
8
artificial structures
8
structures
7
natural
5
establishment
5
restoration
4

Similar Publications

Oral immunotherapy in children with allergic diseases: past, present and future.

Minerva Pediatr (Torino)

September 2025

Pediatric Respiratory Unit, Department of Clinical and Experimental Medicine, San Marco Hospital, University of Catania, Catania, Italy.

Allergen immunotherapy (AIT) is the only treatment capable of modifying the natural history of allergic diseases by promoting immune tolerance. Initially developed for respiratory allergies, AIT has expanded to include food allergies, particularly through oral immunotherapy (OIT). This review explores the historical evolution, current applications, and future directions of AIT in pediatric patients.

View Article and Find Full Text PDF

Bifidobacteria are naturally found in the human gut and quickly establish dominance shortly after birth, playing a crucial role in the development and stability of the infant gut microbiota. A growing body of research suggests that host and environmental factors shape the colonization and the relative abundance of bifidobacteria in the infant gut during early life. Understanding the factors that influence bifidobacterial colonization and maintaining normal colonization levels are keys to ensuring gut health.

View Article and Find Full Text PDF

Indocyanine green (ICG) is a well-established near-infrared dye which has been used clinically for several decades. Recently, it has been utilised for fluorescence-guided surgery in a range of solid cancer types, including sarcoma, with the aim of reducing the positive margin rate. The increased uptake and retention of ICG within tumours, compared with normal tissue, gives surgeons a visual reference to aid resection when viewed through a near-infrared camera.

View Article and Find Full Text PDF

Lysosome-dependent cell death (LDCD) is a regulated form of cell death initiated by increased lysosomal membrane permeability, leading to the cytoplasmic release of lysosomal enzymes and subsequent cellular damage. Molecular mechanisms controlling LDCD include lysosomal membrane instability and lysosomal enzyme release, which together lead to cell damage. A more profound comprehension of these underlying mechanisms may reveal new therapeutic targets for diseases associated with lysosomal dysfunction.

View Article and Find Full Text PDF

Direct Effects of Polyploidization on Floral Scent.

J Chem Ecol

September 2025

Department of Environment and Biodiversity, University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria.

Polyploidy is an important driver of the evolution and diversification of flowering plants. Several studies have shown that established polyploids differ from diploids in floral morphological traits and that polyploidization directly affects these traits. However, for floral scent, which is key to many plant-pollinator interactions, only a few studies have quantified differences between established cytotypes, and the direct effects of polyploidization on floral scent are not yet known.

View Article and Find Full Text PDF