Regulation of HO-induced cells injury through Nrf2 signaling pathway: An introduction of a novel cysteic acid-modified peptide.

Bioorg Chem

Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.

Published: May 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A novel peptide (Cya-Phe-Leu-Ala-Pro, SCP) was formulated through non-protein amino acid-cysteic acid (Cya) modification of collagen peptide (Phe-Leu-Ala-Pro, CP) from Acaudina molpadioides. Introduction of this Cya showed remarkable improvement in the scavenging activities of OH·. SCP exhibited stronger effects than CP in preventing HO-induced oxidative damage due to lower levels of ROS and MDA, and higher activities of antioxidant enzymes, such as SOD, GSH-Px, HO-1, and NQO1. It was speculated that SCP could significantly increase the expression level of Nrf2 compared to CP, thereby activating the expression of downstream ARE genes. The expression levels of p38 in the upstream pathway to regulate Nrf2 content were significantly higher in both the CP and SCP-treated groups, while a higher level of JNK was observed only in the SCP-treated groups. The present study provided insights towards the application of cysteic acid modified peptide in protecting cell from oxidative damage through the JNK/Nrf2 pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2021.104811DOI Listing

Publication Analysis

Top Keywords

oxidative damage
8
scp-treated groups
8
regulation ho-induced
4
ho-induced cells
4
cells injury
4
injury nrf2
4
nrf2 signaling
4
signaling pathway
4
pathway introduction
4
introduction novel
4

Similar Publications

Associations between element mixtures and biomarkers of pathophysiologic pathways related to autism spectrum disorder.

J Trace Elem Med Biol

September 2025

Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China. Electronic address:

Objective: We previously documented that exposure to a spectrum of elements is associated with autism spectrum disorder (ASD). However, there is a lack of mechanistic understanding as to how elemental mixtures contribute to the ASD development.

Materials And Methods: Serum and urinary concentrations of 26 elements and six biomarkers of ASD-relevant pathophysiologic pathways including serum HIPK 2, serum p53 protein, urine malondialdehyde (MDA), urine 8-OHdG, serum melatonin, and urine carnitine, were measured in 21 ASD cases and 21 age-matched healthy controls of children aged 6-12 years.

View Article and Find Full Text PDF

Myocardial injury constitutes a life-threatening complication of sepsis, driven by synergistic oxidative-inflammatory pathology involving dysregulated production of reactive oxygen species (ROS), reactive nitrogen species (RNS), and proinflammatory cytokines. This pathophysiological cascade remarkably elevates morbidity and mortality rates in septic patients, emerging as a key contributor to poor clinical outcomes. Despite its clinical significance, no clinically validated therapeutics currently exist for managing septic cardiomyopathy.

View Article and Find Full Text PDF

Objective: Aim: To evaluate the state of oxidation processes and morphological changes in the heart of rats with chronic hypodynamia during the development of epinephrine heart damage (EHD)..

Patients And Methods: Materials and Methods: The study was performed on 144 white male Wistar rats.

View Article and Find Full Text PDF

Hepatic ischaemia-reperfusion (IR) injury is a serious clinical issue, especially in patients with type 2 diabetes mellitus (T2DM). As mitochondria play a critical role in the regulation of IR-induced liver damage, mitochondria-targeted treatment is of the utmost significance for improving outcomes. The present study explored the mitoprotective role of combined ginsenoside-MC1 (GMC1) and irisin administration in diabetic rats with hepatic IR injury.

View Article and Find Full Text PDF

Background: Cardiac ischemia reperfusion (I/R) injury is a serious consequence of reperfusion therapy for myocardial infarction (MI). Peptidylarginine deiminase 4 (PAD4) is a calcium-dependent enzyme that catalyzes the citrullination of proteins. In previous studies, PAD4 inhibition protected distinct organs from I/R injury by preventing the formation of neutrophil extracellular traps (NETs) and attenuating inflammatory responses.

View Article and Find Full Text PDF