98%
921
2 minutes
20
Transpiration can directly reflect the response of the crop growth and development, therefore irrigation design based on a transpiration model is an important factor towards establishing an efficient irrigation strategy. Thus, the purpose of this experiment is to develop and verify a tomato transpiration model by correcting the relationship between the transpiration rate and environmental factors by measuring the actual transpiration rate. The actual crop transpiration rate, which is measured using a load cell, and the weight changes calculated at 10-min intervals, are applied to the development of the transpiration model. The experimental results show that the transpiration rate has no linear relationship with the radiation amount (Rad) or vapor pressure deficit (VPD). The relationship between Rad and VPD with transpiration rate was fitted by the exponential rise to maximum, and gaussian peak curve, respectively. This allowed a transpiration model to be developed by compensating the Rad and VPD based on the existing Penman-Monteith (P-M) equation. The developed transpiration model showed higher regression constant values than the existing one. The developed transpiration model from the experiment can be utilized for precise irrigation control.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2021.03.005 | DOI Listing |
Biology (Basel)
August 2025
College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
is a medicinal and ornamental herbaceous plant with significant economic value, as its tuberous roots are used for medicinal purposes. However, the current production of medicinal plants is characterized by wasteful use of resources and ecological risks caused by the unreasonable application of nitrogen fertilizers. In this study, based on uniform application of phosphorus and potassium fertilizers, six nitrogen application levels were set in pot experiments (expressed as N): N0: 0 kg/ha, N1: 208.
View Article and Find Full Text PDFMath Biosci Eng
June 2025
Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
The hydrologic cycle is increasingly disrupted due to the rising human population and the associated decline in forest trees. The rationale of this work was to address the disruption in the hydrologic cycle, which is caused by the dual adverse effects of human population growth: reducing forestry trees and diminishing clouds' formation. The proposed model assumes that the density of forestry trees decreases due to harvesting activities to fulfill the resource demands of human population.
View Article and Find Full Text PDFMath Biosci Eng
July 2025
School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei 230036, China.
Studying the relationship between Moso bamboo sap flow and environmental factors is essential for understanding the water transpiration patterns of this species. Traditional methods often rely on correlation analysis, but correlation does not imply causation. To elucidate the underlying mechanisms of how major environmental factors influence Moso bamboo sap flow, we analyzed the causality between them.
View Article and Find Full Text PDFDistrib Comput
June 2025
Computer Science, Durham University, Durham, DH1 3LE United Kingdom.
Beeping models are models for networks of weak devices, such as sensor networks or biological networks. In these networks, nodes are allowed to communicate only via emitting beeps: unary pulses of energy. Listening nodes have only the capability of : they can only distinguish between the presence or absence of a beep, but receive no other information.
View Article and Find Full Text PDFNicotine Tob Res
September 2025
Sheffield Centre for Health and Related Research, University of Sheffield, United Kingdom.