Continuous and selective copper recovery by multi-modified and granulated SBA-15.

Chemosphere

Faculty of Engineering and IT, University of Technology Sydney, P.O. Box 123, Broadway, Ultimo, NSW 2007, Australia. Electronic address:

Published: May 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Continuous and selective recovery of copper (Cu) from heavy metal wastewater not only mitigates the pollution of environment but also can be applied for industrial field. Due to several advantages such as large pore size, easy modification, physical and chemical stabilities, mesoporous silica material, SBA-15, has been synthesized via hydrothermal reaction in this study. For enhancing the adsorption capacity and selectivity for Cu ions, prepared SBA-15 was modified with manganese loading and amine-grafting (MN-SBA) then granulated by alginic-acid (GMN-SBA), successfully. Adsorption capacities for heavy metals such as Cu, Zn, Ni and Mn were 2.11, 1.24, 1.74 and 1.25 mmol/g on MN-SBA and decreased to 1.23, 0.68, 0.86 and 0.65 when it was granulated. Even though the adsorption capacities of GMN-SBA for heavy metals decreased by 40-50%, it enabled easy regeneration and separation process when applied for continuous fixed-bed column adsorption mode. Specifically, the results demonstrated that GMN-SBA was able to be reused for 5 times while maintaining over 80% adsorption capacities. Fixed-bed adsorption results were well explained by dynamic adsorption model incorporated with linear driving force approximation (LDFA) model. The simulation of fixed-bed adsorption tests was proceeded in terms of bed length, feeding concentration and flow rate, and it showed the breakthrough times were shifted in the axis of time. In multi-component adsorption, LDFA model showed a high overshoot phenomenon of the breakthrough curves for Zn, Ni and Mn compared to Cu. This reflected the high affinity of Cu towards GMN-SBA compared to other heavy metals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2021.129820DOI Listing

Publication Analysis

Top Keywords

adsorption capacities
12
heavy metals
12
adsorption
9
continuous selective
8
fixed-bed adsorption
8
ldfa model
8
selective copper
4
copper recovery
4
recovery multi-modified
4
multi-modified granulated
4

Similar Publications

Green synthesis of silver nanoparticles using Ocimum sanctum for efficient Congo red dye removal: a response surface methodology approach.

Environ Monit Assess

September 2025

Department of Civil Engineering, Faculty of Engineering, Karpagam Academy of Higher Education, Pollachi Main Road, Eachanari Post, Coimbatore, Tamil Nadu, 641021, India.

Synthetic dyes, such as Congo red (CR), pose serious threats to human health and aquatic ecosystems because of their carcinogenicity and resistance to degradation, necessitating the development of efficient and eco-friendly remediation strategies. In this study, silver nanoparticles (AgNPs) were synthesized via a green method using Ocimum sanctum (holy basil) leaf extract and applied for CR dye removal from aqueous solutions. The adsorption process was optimized using response surface methodology (RSM) based on Box-Behnken design (BBD), evaluating the influence of key parameters including pH, AgNP dosage, initial dye concentration, contact time, and temperature.

View Article and Find Full Text PDF

A key challenge in capturing CO from postcombustion gases is humidity due to competitive adsorption between CO and HO. Multivariate (MTV) metal-organic frameworks (MOFs) have been considered a promising option to address this problem, e.g.

View Article and Find Full Text PDF

Lutetium (Lu(III)), a heavy rare earth element, plays a critical role in advanced industrial processes and nuclear medicine applications. Given its high economic value and potential environmental risks, the recovery of Lu(III) from medical wastewater is both necessary and urgent. However, previous studies on the adsorption behavior of Lu(III) have been limited by low adsorption capacity, competition from coexisting metal ions, and the influence of environmental temperature.

View Article and Find Full Text PDF

Galvanizing waste-derived Zn-induced defective Fe-based metal-organic frameworks as superior adsorbent for enhanced antibiotic removal.

Environ Res

September 2025

College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China; Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China; Fujian Provincial University Key Laboratory of Poll

The derivation of defect-engineered metal-organic frameworks (MOFs) from industrial waste simultaneously mitigates environmental pollution, reduces MOF synthesis costs, and enhances adsorption performance. Herein, this study demonstrates a sustainable strategy for the resourceful synthesis of iron-based MOF s-MIL-100(Fe) using galvanizing pickling waste liquor (80.5 wt.

View Article and Find Full Text PDF

A novel molecularly imprinted 3D COF-based magnetic solid-phase extraction combined with UHPLC-MS/MS to detect trace residues of acyclovir, penciclovir and ganciclovir in animal-derived food.

Food Chem

September 2025

Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:

The residues of antiviral drugs acyclovir (ACV), penciclovir (PCV) and ganciclovir (GCV) in foods, particularly in ready-to-eat products, pose a significant threat to human health, making it urgent to develop a rapid and sensitive method for their detection. Herein, we designed a novel magnetic molecularly imprinted three-dimensional covalent organic framework (MICOF@FeO) for selective extraction of these antiviral drugs from complicated food matrix. The prepared MICOF@FeO integrates molecular recognition ability, 3D COF structural advantages and magnetic responsiveness, providing high selectivity, large adsorption capacity and facile operation for magnetic solid-phase extraction (MSPE).

View Article and Find Full Text PDF