98%
921
2 minutes
20
Visible light photocatalysis has become a powerful tool in organic synthesis that uses photons as traceless, sustainable reagents. Most of the activities in the field focus on the development of new reactions via common photoredox cycles, but recently a number of exciting new concepts and strategies entered less charted territories. We survey approaches that enable the use of longer wavelengths and show that the wavelength and intensity of photons are import parameters that enable tuning of the reactivity of a photocatalyst to control or change the selectivity of chemical reactions. In addition, we discuss recent efforts to substitute strong reductants, such as elemental lithium and sodium, by light and technological advances in the field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7937574 | PMC |
http://dx.doi.org/10.1016/j.isci.2021.102209 | DOI Listing |
J Org Chem
September 2025
Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Shenzhen Grubbs Institute, Guangming Advanced Research Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. Ch
Catalytic C-N coupling reactions are among the most important bond-forming events in synthetic chemistry. Ammonium salts are economic and easily available inorganic compounds, serving as ideal nitrogen sources for nitrogen-containing organic compounds. The use of ammonium salts highlights the synthesis of -containing organic compounds from inorganic compounds.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin, 300350, China.
Radical coupling reactions have been widely used in the synthesis of complex organic molecules, materials science, and drug research. However, restricted conditions or special catalysts are required to overcome the energy barrier and trigger the coupling reaction efficiently. In this study, we provide experimental evidence that the C─N radical coupling reactions can be significantly accelerated by an oriented external electric field (OEEF) under synchronous UV irradiation without a catalyst.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China.
Porous organic cages (POCs) have emerged as promising porous materials for a wide range of applications. However, their development is often limited by insufficient chemical stability and challenges in systematically functionalization. Herein, we reported the design and synthesis of a tetrazine-based POC (TC1) featuring rigid tetrahedral structure, prepared via a one-pot nucleophilic aromatic substitution reaction.
View Article and Find Full Text PDFOrg Lett
September 2025
Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
A transition-metal-free ring opening of bicyclo[1.1.0]butanes (BCBs) using hydroperoxides as nucleophiles in hexafluoroisopropanol (HFIP) resulting in the diastereoselective synthesis of peroxycyclobutanes under mild conditions with a broad scope is demonstrated.
View Article and Find Full Text PDFChem Pharm Bull (Tokyo)
September 2025
Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
Antigen-binding proteins, such as nanobodies, modified with functional small molecules hold great potential for applications including imaging probes, drug conjugates, and localized catalysts. However, traditional chemical labeling methods that randomly target lysine or cysteine residues often produce heterogeneous conjugates with limited reproducibility. Conventional site-specific conjugation approaches, which typically modify only the N- or C-terminus, may also be insufficient to achieve the desired functionalities.
View Article and Find Full Text PDF