98%
921
2 minutes
20
A field study was designed to explore the impacts of foliar-applied chemically and green synthesized titanium dioxide nanoparticles (TiO NPs) on cadmium (Cd) uptake in wheat plants. The wheat was grown in field which was contaminated with Cd and plants were subjected to foliar episodes of TiO NPs during plant growth period. Leaf extracts of two plant species (Trianthema portulacastrum, Chenopodium quinoa) were used for green synthesis while sol-gel method was used for chemical preparation of TiO NPs. Results showed that TiO NPs significantly enhanced the plant height, length of spikes photosynthesis, and straw and grain yield compared to control. TiO NPs minimized the oxidative burst in leaves and improved the enzyme activities than control. Cadmium concentrations of straw, roots and grains decreased after TiO NPs treatments than control. The grain Cd contents were below recommended threshold (0.2 mg Cd /kg grain DW) for cereals upon NPs exposure. The health risk index by the dietary use of grains for adults was below threshold upon NPs exposure. Overall, foliar use of TiO NPs prepared from plant extracts was appropriate in minimizing Cd contents in wheat grains, thereby reducing risk of Cd to human health via food chain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2021.125585 | DOI Listing |
Talanta
September 2025
College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Instrument
Rational optimization of the pore size and topology of porous nanocarriers is crucial for improving the loading amount of luminophore and enhancing electrochemiluminescence (ECL) performance. In this study, an equimolar linear ligand replacement strategy was employed to synthesize novel mesoporous metal-organic frameworks (MOFs) for encapsulating Ru(bpy) (Ru@Zr MOFs) under room temperature without an acid modulator. Ingenious ligand substitution allows precise control of pore size, enabling encapsulation at the single-molecule level within mesoporous cages.
View Article and Find Full Text PDFToxicon
September 2025
Department of Pathology, College of Medicine, King Khalid University, P.O. 641, Abha, 61421, Saudi Arabia; Department of Forensic Medicine and Clinical Toxicology, Mansoura University, Egypt.
Titanium dioxide nanoparticles (TiO-NPs) are used in the production of various industrial and commercial products and reported to cause neurotoxicity in Sprague Dawley rats. Fortunellin (FRN) is a potent flavonoid with diverse biological properties. This research experiment was performed to explore the protective role FRN against TiO-NPs induced brain damage.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
School of Public Health, Guizhou Medical University, Guiyang, China. Electronic address:
The increasing use of titanium dioxide (TiO) nanoparticles (NPs) has raised concerns related to their environmental accumulation and the associated ecological risks. Understanding the key biomolecular responses of TiO₂ NP-tolerant organisms like Physarum flavicomum GD217 is essential for combating the pollution of and exposure to these NPs. In this study, we employed multi-omics approaches combined with molecular biology techniques to investigate the stress responses of GD217 to mixed-phase TiO₂ NPs (M-TiO₂ NPs).
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2025
Faculty of Medicine, Pharmacy and Prevention, Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy. Electronic address:
Titanium dioxide nanoparticles (TiO NPs) are well suited for cosmetics and polymer films because they efficiently absorb UV light while remaining transparent to visible light. Their widespread use requires strategies for managing potential human and environmental risks. Implementing the Safe and Sustainable by Design (SSbD) methodology to advanced chemicals and materials is a major global challenge and a concept that is included in several EU research projects.
View Article and Find Full Text PDFVet Parasitol
August 2025
Nano Biosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu 630004, India. Electronic address:
In the present work, the in vitro efficacy of titanium isopropoxide, Cassia auriculata flower extract and C. auriculata-mediated titanium nanoparticles (Ca-TiO NPs) as an acaricidal drug against Rhipicephalus (Boophilus) microplus (larvae, nymph and adult) and Haemaphysalis bispinosa (adult) was evaluated. The synthesized nanomaterial was then characterized through UV, XRD, FTIR, Zeta potential and HR-TEM techniques.
View Article and Find Full Text PDF