Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Optogenetics is an advanced neuroscience technique that enables the dissection of neural circuitry with high spatiotemporal precision. Recent advances in materials and microfabrication techniques have enabled minimally invasive and biocompatible optical neural probes, thereby facilitating optogenetic research. However, conventional fabrication techniques rely on cleanroom facilities, which are not easily accessible and are expensive to use, making the overall manufacturing process inconvenient and costly. Moreover, the inherent time-consuming nature of current fabrication procedures impede the rapid customization of neural probes in between studies. Here, we introduce a new technique stemming from 3D printing technology for the low-cost, mass production of rapidly customizable optogenetic neural probes. We detail the 3D printing production process, on-the-fly design versatility, and biocompatibility of 3D printed optogenetic probes as well as their functional capabilities for wireless optogenetics. Successful studies with 3D printed devices highlight the reliability of this easily accessible and flexible manufacturing approach that, with advances in printing technology, can foreshadow its widespread applications in low-cost bioelectronics in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7942018PMC
http://dx.doi.org/10.1002/adfm.202004285DOI Listing

Publication Analysis

Top Keywords

neural probes
12
optogenetic probes
8
easily accessible
8
printing technology
8
probes
5
rapidly-customizable scalable
4
scalable 3d-printed
4
3d-printed wireless
4
optogenetic
4
wireless optogenetic
4

Similar Publications

Oxytocin-mediated empathy internally facilitates cooperative behaviors in rats.

Sci Bull (Beijing)

August 2025

Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Reciprocity is considered one of the vital mechanisms that sustain the evolution of cooperative behavior. However, free-riding, where assistance is received but not reciprocated, poses a serious threat to reciprocity behavior, which relies on future payback. Previous theories proposed that third-party punishment plays a vital role in preventing free-riding behavior.

View Article and Find Full Text PDF

Advances in intravital imaging of adult neurogenesis in mice.

Stem Cell Reports

September 2025

Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland. Electronic address:

The lifelong addition of stem-cell-derived neurons into distinct areas of the mammalian brain, such as the olfactory bulb and hippocampal dentate gyrus, provides structural and functional plasticity to neural circuits. To understand the dynamic processes underlying adult neurogenesis, from dividing stem/progenitor cells to integrating neurons, and to probe how new neurons shape brain function, intravital imaging turned out to be a powerful tool. Here, we review recent advances in the field of adult neurogenesis achieved by using in vivo imaging approaches in mice and discuss future directions of imaging-based experiments that will further our understanding of adult neurogenesis.

View Article and Find Full Text PDF

Layer 6 corticothalamic (L6CT) neurons project to both cortex and thalamus, inducing multiple effects including the modulation of cortical and thalamic firing, and the emergence of high gamma oscillations in the cortical local field potential (LFP). We hypothesize that the high gamma oscillations driven by L6CT neuron activation reflect the dynamic engagement of intracortical and cortico-thalamo-cortical circuits. To test this, we optogenetically activated L6CT neurons in NTSR1-cre mice (both male and female) expressing channelrhodopsin-2 in L6CT neurons.

View Article and Find Full Text PDF

Transcranial temporal interference stimulation (tTIS) has recently emerged as a non-invasive neuromodulation method aimed at reaching deeper brain regions than conventional techniques. However, many questions about its effects remain, requiring further experimental studies. This review consolidates the experimental literature on tTIS's effects in the human brain, clarifies existing evidence, identifies knowledge gaps, and proposes future research directions to evaluate its potential.

View Article and Find Full Text PDF

Chromatin dynamics play a crucial role in cellular differentiation, yet tools for studying global chromatin mobility in living cells remain limited. Here, a novel probe is developeded for the metabolic labeling of chromatin and tracking its mobility during neural differentiation. The labeling system utilizes a newly developed silicon rhodamine-conjugated deoxycytidine triphosphate (dCTP).

View Article and Find Full Text PDF