98%
921
2 minutes
20
Background: Rice blast caused by Magnaporthe oryzae is one of the most destructive diseases of rice. An increasing number of microRNAs (miRNAs) have been reported to fine-tune rice immunity against M. oryzae and coordinate with growth and development.
Results: Here, we showed that rice microRNA159a (Osa-miR159a) played a positive role in rice resistance to M. oryzae. The expression of Osa-miR159a was suppressed in a susceptible accession at 12, 24, and 48 h post-inoculation (hpi); it was upregulated in a resistant accession of M. oryzae at 24 hpi. The transgenic rice lines overexpressing Osa-miR159a were highly resistant to M. oryzae. In contrast, the transgenic lines expressing a short tandem target mimic (STTM) to block Osa-miR159a showed enhanced susceptibility. Knockout mutations of the target genes of Osa-miR159a, including OsGAMYB, OsGAMYBL, and OsZF, led to resistance to M. oryzae. Alteration of the expression of Osa-miR159a impacted yield traits including pollen and grain development.
Conclusions: Our results indicated that Osa-miR159a positively regulated rice immunity against M. oryzae by downregulating its target genes. Proper expression of Osa-miR159a was critical for coordinating rice blast resistance with grain development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7937009 | PMC |
http://dx.doi.org/10.1186/s12284-021-00469-w | DOI Listing |
Ecotoxicol Environ Saf
September 2025
Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China; South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center Zhanjiang, Guangdong 524088, China. Electronic address:
Aflatoxin B1 (AFB1)-induced hepatotoxicity is a common toxic disease in poultry farming. However, there is currently a lack of effective pharmaceutical interventions for treating AFB1. Astaxanthin (AST), a natural carotenoid, exhibits potent antioxidant and immune-enhancing properties.
View Article and Find Full Text PDFPlant J
September 2025
Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea.
Salt stress impairs photosynthetic efficiency and consequently reduces the growth, development, and grain yield of crop plants. The formation of hydrophobic barriers in the root endodermis, including the suberin lamellae and Casparian strips, is a key adaptive strategy for salt stress tolerance. In this study, we identified the role of the rice NAC transcription factor, ONAC005, in salt stress tolerance.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Social Science, Malawi Liverpool Wellcome Clinical Programme, Blantyre, Malawi.
Diarrhoea due to rotavirus remains a significant cause of child mortality in developing regions. Caregivers' perspectives on the social determinants of gastroenteritis and childhood vaccination, including the rotavirus vaccine, were explored through focus group discussions in Ethiopia (n = 6), Kenya (n = 14), and Malawi (n = 10), using a combination of thematic and framework analysis approaches. The results show that diarrhoea was perceived to be a burden in all three countries, particularly among infants, due to challenges in WASH (water, sanitation, and hygiene) infrastructures and poverty.
View Article and Find Full Text PDFBioinformatics
September 2025
Department of Mathematical Sciences, The University of Texas at Dallas, TX United States.
Motivation: The advent of next-generation sequencing-based spatially resolved transcriptomics (SRT) techniques has reshaped genomic studies by enabling high-throughput gene expression profiling while preserving spatial and morphological context. Understanding gene functions and interactions in different spatial domains is crucial, as it can enhance our comprehension of biological mechanisms, such as cancer-immune interactions and cell differentiation in various regions. It is necessary to cluster tissue regions into distinct spatial domains and identify discriminating genes that elucidate the clustering result, referred to as spatial domain-specific discriminating genes (DGs).
View Article and Find Full Text PDFCurr Biol
August 2025
National Key Laboratory of Green Pesticide, Guangzhou 510642, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China. Electronic address:
Plant viruses are known to indirectly manipulate insect vector behavior by altering host-plant phenotypes, yet the mechanisms by which they directly regulate vector behavior to enhance transmission remain poorly understood. Here, we reveal how the southern rice black-streaked dwarf virus (SRBSDV) reprograms the host preference of its planthopper vector, Sogatella furcifera, from infected to healthy rice plants by disrupting immune-olfactory crosstalk. We demonstrate that the SRBSDV-encoded P8 protein competitively binds to the S.
View Article and Find Full Text PDF