The Diverse Salt-Stress Response of Arabidopsis and Ethylene Signaling Mutants Is Linked to Altered Root Auxin Homeostasis.

Plants (Basel)

Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckststraat 35, B-9000 Ghent, Belgium.

Published: February 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We explored the interplay between ethylene signals and the auxin pool in roots exposed to high salinity using wild-type plants (Col-0), and the ethylene-signaling mutants (constitutive) and (insensitive). The negative effect of salt stress was less pronounced in individuals, which was concomitant with augmented auxin signaling both in the controls and after 100 mM NaCl treatment. The R2D2 auxin sensorallowed mapping this active auxin increase to the root epidermal cells in the late Cell Division (CDZ) and Transition Zone (TZ). In contrast, the ethylene-insensitive plants appeared depleted in active auxins. The involvement of ethylene/auxin crosstalk in the salt stress response was evaluated by introducing auxin reporters for local biosynthesis () and polar transport (, , , , ) in the mutants. The constantly operating ethylene-signaling pathway in was linked to increased auxin biosynthesis. This was accompanied by a steady expression of the auxin transporters evaluated by qRT-PCR and crosses with the auxin transport reporters. The results imply that the ability of mutant to tolerate high salinity could be related to the altered ethylene/auxin regulatory loop manifested by a stabilized local auxin biosynthesis and transport.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7997360PMC
http://dx.doi.org/10.3390/plants10030452DOI Listing

Publication Analysis

Top Keywords

auxin
10
high salinity
8
salt stress
8
auxin biosynthesis
8
diverse salt-stress
4
salt-stress response
4
response arabidopsis
4
arabidopsis ethylene
4
ethylene signaling
4
signaling mutants
4

Similar Publications

Auxin Gradients Determine Reproductive Development in Pea (Pisum sativum).

Physiol Plant

September 2025

Plant BioSystems, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.

Auxins are involved in the regulation of fruit set and development; however, the role of IAA is unclear in pea (Pisum sativum) since the endogenous auxin 4-Cl-IAA appears to be the auxin stimulating ovary (pericarp) growth. To further understand the role of auxins during fruit development, auxin localization, quantitation, transport, and gene expression activity were assessed in this model legume species. IAA levels and auxin activity (DR5::β-Glucuronidase [GUS] staining and enzyme activity) were substantially reduced in the pericarp vascular tissues, pedicels, and peduncles of fruit upon seed removal, reflecting auxin transport streams derived from the seeds through these tissues.

View Article and Find Full Text PDF

From Growth to Survival: Aux/IAA Genes in Plant Development and Stress Management.

Plant Sci

September 2025

Fermentation and Phytofarming Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India. Electronic address:

Auxin, one of the earliest recognized and extensively investigated phytohormones, is crucial in plant growth and survival in adverse environmental conditions. Two gene families primarily regulate auxin signaling: auxin response factors (ARFs) and auxin/indole-3-acetic acid (Aux/IAA). Aux/IAA family proteins are recognized as essential elements of the nuclear auxin signaling system, inhibiting gene transcription in their presence and facilitating gene activation upon their degradation.

View Article and Find Full Text PDF

Endophytic fungi are nonpathogenic fungi that live symbiotically in the interior of healthy plant tissues and form mutualistic associations with their hosts. These fungi are critically involved in promoting plant development, strengthening plant uptake of nutrients, and improving plant resistance to biotic and abiotic stress conditions. Endophytic fungi improve plant growth by synthesizing phytohormones (e.

View Article and Find Full Text PDF

Apicomplexan AP2 (ApiAP2) family proteins are a family of transcription factors that are known to regulate gene expression in apicomplexan pathogens, including . In this study, we focused on TgAP2X-7, a member of the APiAP2 family that is predicted to be essential for fitness. Endogenous tagging of TgAP2X-7 followed by immunofluorescence analysis revealed that it's a cell cycle-regulated nuclear protein with peak expression in the G1 phase.

View Article and Find Full Text PDF

Metabolomic and transcriptomic analyses unveil the accumulation of shikimic acid in the leaves of .

Front Plant Sci

August 2025

State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, China.

Introduction: Shikimic acid, as a critical precursor for oseltamivir synthesis in antiviral pharmaceuticals, faces escalating global demand. Although leaves have emerged as a promising natural source of shikimic acid owing to their exceptional content of this valuable compound and substantial biomass production capacity, the molecular mechanisms underlying its biosynthesis and downstream metabolic regulation in leaves remain largely unknown.

Methods: Here, the concentration of shikimic acid in 33 clones were assessed, and 1# (referred as HS) had the highest level.

View Article and Find Full Text PDF