Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Human bone marrow stem cells (HBMSCs) are isolated from the bone marrow. Stem cells can self-renew and differentiate into various types of cells. They are able to regenerate kinds of tissue that are potentially used for tissue engineering. To maintain and expand these cells under culture conditions is difficult-they are easily triggered for differentiation or death. In this study, we describe a new culture formula to culture isolated HBMSCs. This new formula was modified from NCDB 153, a medium with low calcium, supplied with 5% FBS, extra growth factor added to it, and supplemented with N-acetyl-L-cysteine and L-ascorbic acid-2-phosphate to maintain the cells in a steady stage. The cells retain these characteristics as primarily isolated HBMSCs. Moreover, our new formula keeps HBMSCs with high proliferation rate and multiple linage differentiation ability, such as osteoblastogenesis, chondrogenesis, and adipogenesis. It also retains HBMSCs with stable chromosome, DNA, telomere length, and telomerase activity, even after long-term culture. Senescence can be minimized under this new formulation and carcinogenesis of stem cells can also be prevented. These modifications greatly enhance the survival rate, growth rate, and basal characteristics of isolated HBMSCs, which will be very helpful in stem cell research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7923799PMC
http://dx.doi.org/10.3390/ijms22042095DOI Listing

Publication Analysis

Top Keywords

stem cells
16
bone marrow
12
isolated hbmscs
12
cells
8
marrow stem
8
hbmscs formula
8
characteristics isolated
8
hbmscs
6
culture
5
stem
5

Similar Publications

The stress urinary incontinence (SUI) is a difficulty in urology and current sub-urethral sling treatments are associated with inflamation and recurrence. In this study, we developed a novel tissue-engineered sling with myogenic induced adiposederived stem cells (MI-ADSCs) sheets induced by 5-Aza and combined with electrospun scaffolds of silk fibroin and poly(lactide-co-glycolide) (SF/PLGA) for the treatment of stress urinary incontinence. MI-ADSCs increased α-SMA, MyoD and Desmin the mRNA and protein expression.

View Article and Find Full Text PDF

X-Linked Hypophosphatemia: Role of Fibroblast Growth Factor 23 on Human Skeletal Muscle-Derived Cells.

Calcif Tissue Int

September 2025

FirmoLab, Fondazione F.I.R.M.O. Onlus and Stabilimento Chimico Farmaceutico Militare (SCFM), 50141, Florence, Italy.

X-linked hypophosphatemia (XLH) is a rare and progressive disease, due to inactivating mutations in the phosphate-regulating endopeptidase homolog X-linked (PHEX) gene. These pathogenic variants result in elevated circulating levels of fibroblast growth factor 23 (FGF23), responsible for the main clinical manifestations of XLH, such as hypophosphatemia, skeletal deformities, and mineralization defects. However, XLH also involves muscular disorders (muscle weakness, pain, reduced muscle density, peak strength, and power).

View Article and Find Full Text PDF

The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.

View Article and Find Full Text PDF

CETN3 deficiency induces microcephaly by disrupting neural stem/progenitor cell fate through impaired centrosome assembly and RNA splicing.

EMBO Mol Med

September 2025

Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, National Stem Cell Translational Resource Center & Ministry of Education Stem Cell Resource Center, Frontier Science Center for Stem Cell Research, School of Li

Primary microcephaly, a rare congenital condition characterized by reduced brain size, occurs due to impaired neurogenesis during brain development. Through whole-exome sequencing, we identified compound heterozygous loss-of-function mutations in CENTRIN 3 (CETN3) in a 5-year-old patient with primary microcephaly. As CETN3 has not been previously linked to microcephaly, we investigated its potential function in neurodevelopment in human pluripotent stem cell-derived cerebral organoids.

View Article and Find Full Text PDF

Immune cells are increasingly recognized as nutrient sensors; however, their developmental role in regulating growth under homeostasis or dietary stress remains elusive. Here, we show that Drosophila larval macrophages, in response to excessive dietary sugar (HSD), reprogram their metabolic state by activating glycolysis, thereby enhancing TCA-cycle flux, and increasing lipogenesis-while concurrently maintaining a lipolytic state. Although this immune-metabolic configuration correlates with growth retardation under HSD, our genetic analyses reveal that enhanced lipogenesis supports growth, whereas glycolysis and lipolysis are growth-inhibitory.

View Article and Find Full Text PDF