The perception of octave pitch affinity and harmonic fusion have a common origin.

Hear Res

Cambridge Hearing Group, MRC Cognition and Brain Sciences Unit, Cambridge, United Kingdom. Electronic address:

Published: May 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Musicians say that the pitches of tones with a frequency ratio of 2:1 (one octave) have a distinctive affinity, even if the tones do not have common spectral components. It has been suggested, however, that this affinity judgment has no biological basis and originates instead from an acculturation process ‒ the learning of musical rules unrelated to auditory physiology. We measured, in young amateur musicians, the perceptual detectability of octave mistunings for tones presented alternately (melodic condition) or simultaneously (harmonic condition). In the melodic condition, mistuning was detectable only by means of explicit pitch comparisons. In the harmonic condition, listeners could use a different and more efficient perceptual cue: in the absence of mistuning, the tones fused into a single sound percept; mistunings decreased fusion. Performance was globally better in the harmonic condition, in line with the hypothesis that listeners used a fusion cue in this condition; this hypothesis was also supported by results showing that an illusory simultaneity of the tones was much less advantageous than a real simultaneity. In the two conditions, mistuning detection was generally better for octave compressions than for octave stretchings. This asymmetry varied across listeners, but crucially the listener-specific asymmetries observed in the two conditions were highly correlated. Thus, the perception of the melodic octave appeared to be closely linked to the phenomenon of harmonic fusion. As harmonic fusion is thought to be determined by biological factors rather than factors related to musical culture or training, we argue that octave pitch affinity also has, at least in part, a biological basis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614450PMC
http://dx.doi.org/10.1016/j.heares.2021.108213DOI Listing

Publication Analysis

Top Keywords

harmonic fusion
12
harmonic condition
12
octave pitch
8
pitch affinity
8
biological basis
8
melodic condition
8
condition hypothesis
8
harmonic
6
octave
6
condition
6

Similar Publications

Tracking phase transitions of tactoids in sulfated cellulose nanocrystals using second harmonic generation microscopy.

Carbohydr Polym

November 2025

Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium. Electronic address:

Cellulose nanocrystals (CNCs) have emerged as promising candidates for chiroptical functional materials due to their ability to form cholesteric liquid crystals with tunable periodicity. The quality of the final cholesteric phase is influenced by the nucleation, growth and coalescence mechanism of the initial droplets, known as tactoids. Current research focuses on understanding the size and morphological transformations of these tactoids, to gain deeper insights into their dynamic behavior and, in turn, to better control the final properties of novel photonic materials.

View Article and Find Full Text PDF

Brain-computer interface (BCI) provides an interconnected pathway between the human brain and external devices and paves a potential route for mind manipulations. However, most existing BCI technologies are based on simple signal transmission and are independent of other interface devices, with limited consideration for the reliability and security of the human brain's information interaction in complicated wireless environments. Here, we propose a deep fusion coding scheme that combines the BCI visual stimulation coding with metasurface space-time coding at the physical layer, enabling reliable and secure information transfers between the human brain and external devices.

View Article and Find Full Text PDF

Unintended islanding presents substantial operational and safety risks in modern electrical distribution networks, particularly as distributed generation (DG) sources increasingly match or nearly match local load requirements. Conventional islanding detection schemes (IDS) often fail under balanced load-generation conditions, resulting in significant undetected events, commonly referred to as the non-detection zone (NDZ). This research addresses these critical limitations by introducing a novel, highly reliable, and robust machine learning-based islanding detection scheme.

View Article and Find Full Text PDF

This paper addresses the core contradiction in fault diagnosis of gearboxes in heavy-duty equipment, where it is challenging to achieve both lightweight and robustness in dynamic industrial environments. Current diagnostic algorithms often struggle with balancing computational efficiency and diagnostic accuracy, particularly in noisy and variable operating conditions. Many existing methods either rely on complex architectures that are computationally expensive or oversimplified models that lack robustness to environmental interference.

View Article and Find Full Text PDF

To address the challenges posed by weak early fault signal features, strong noise interference, low diagnostic accuracy, poor reliability when using single information sources, and the limited availability of high-quality samples in practical applications for permanent magnet synchronous motor (PMSM) bearings, this paper proposes an early bearing fault diagnosis method based on Hippopotamus Optimization Variational Mode Decomposition (HO-VMD) and weighted evidence fusion of current-vibration signals. The HO algorithm is employed to optimize the parameters of VMD for adaptive modal decomposition of current and vibration signals, resulting in the generation of intrinsic mode functions (IMFs). These IMFs are then selected and reconstructed based on their kurtosis to suppress noise and harmonic interference.

View Article and Find Full Text PDF