Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Evaluating drug sensitivity is improved by directly quantifying death kinetics, rather than correlates of viability, such as metabolic activity. This is challenging, requiring time-lapse microscopy and genetically encoded labels to distinguish live and dead cells. Here, we describe fluorescence-based and lysis-dependent inference of cell death kinetics (FLICK). This method requires only a standard fluorescence plate reader, retaining the high-throughput nature and broad accessibility of common viability assays. However, FLICK specifically quantifies death, including an accurate inference of death kinetics. For complete details on the use and execution of this protocol, please refer to Richards et al. (2020).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7890003PMC
http://dx.doi.org/10.1016/j.xpro.2021.100327DOI Listing

Publication Analysis

Top Keywords

death kinetics
16
cell death
8
death
5
flick optimized
4
optimized plate
4
plate reader-based
4
reader-based assay
4
assay infer
4
infer cell
4
kinetics
4

Similar Publications

Clear cell renal cell carcinoma (ccRCC) is a neoplastic disease associated with poor prognosis. Localized disease is successfully treated with nephrectomy; however, advanced disease often requires the combined use of immunotherapy and targeted therapy. To the best of our knowledge, there is no validated method to predict immunotherapy response and there is a lack of knowledge regarding the expression kinetics of exhaustion receptors in the early stages of ccRCC.

View Article and Find Full Text PDF

Novel Radiofluorinated Nanobody PET Tracer for Preclinical Studies of TIM3 Expression.

Mol Pharm

September 2025

Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Research, Investigation and Evaluation of Radiopharmaceuticals, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Departmen

T-cell immunoglobulin and mucin domain-3 (TIM3) is an inhibitory checkpoint glycoprotein expressed on immune cells, particularly tumor-infiltrating lymphocytes (TILs), and plays a critical role in suppressing antitumor immune responses. While dual blockade of TIM3 and programmed cell death protein 1 (PD1) has shown promising results in enhancing immune responses in advanced cancers, the lack of reliable, noninvasive methods for detecting TIM3 expression in tumors remains a major challenge. To address this, we developed and characterized a novel positron emission tomography (PET) tracer, [F]AlF-RESCA-HVCR2N2, based on a TIM3-specific nanobody labeled via [F]AlF radiochemistry.

View Article and Find Full Text PDF

Influence of Leaves Extract on Human Erythrocytes.

Biology (Basel)

August 2025

Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy.

L. (MA) is a member of the Moraceae family, known as "white mulberry". Due to the high levels of bioactive compounds, mulberry plants can be considered a good source of nutrients and antioxidant compounds.

View Article and Find Full Text PDF

The aim of this study was to analyze how recombinant rabbit NGF (Nerve Growth Factor) encapsulated in chitosan (rrβNGFch) affects sperm viability, motility, capacitation, acrosome reaction (AR), kinetic traits, and apoptosis after 30 min and 2 h of storage. Specific intracellular signaling pathways associated with either cell survival, such as protein kinase B (AKT) and extracellular signal-regulated kinases 1/2 (ERK1/2), or programmed cell death, such as c-Jun N-terminal kinase (JNK), were also analyzed. The results confirmed the effect of rrβNGFch on capacitation and AR, whereas a longer storage time (2 h) decreased all qualitative sperm traits.

View Article and Find Full Text PDF

The development of scalable, non-invasive tools to assess tumor responsiveness to structurally active immunoformulations remains a critical unmet need in solid tumor immunotherapy. Here, we introduce a real-time, ex vivo functional system to classify tumor cell lines exposed to a phospholipoproteomic platform, without relying on cytotoxicity, co-culture systems, or molecular profiling. Tumor cells were monitored using IncuCyte S3 (Sartorius) real-time imaging under ex vivo neutral conditions.

View Article and Find Full Text PDF