Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: To create a safe zone, an understanding of the combined femoral and acetabular mating during hip motion is required. We investigated the position of the femoral head inside the acetabular liner during simulated hip motion. We hypothesized that cup and stem anteversions do not equally affect hip motion and combined hip anteversion.

Methods: Hip implant motion was simulated in standing, sitting, sit-to-stand, bending forward, squatting, and pivoting positions using the MATLAB software. A line passing through the center of the stem neck and the center of the prosthetic head exits at the polar axis (PA) of the prosthetic head. When the prosthetic head and liner are parallel, the PA faces the center of the liner (PA position = 0, 0). By simulating hip motion in 1-degree increments, the maximum distance of the PA from the liner center and the direction of its movement were measured (polar coordination system).

Results: The effect of modifying cup and stem anteversion on the direction and distance of the PA's change inside the acetabular liner was different. Stem anteversion influenced the PA position inside the liner more than cup anteversion during sitting, sit-to-stand, squatting, and bending forward (P = .0001). This effect was evident even when comparing stems with different neck angles (P = .0001).

Conclusion: Cup anteversion, stem anteversion, and stem neck-shaft angle affected the PA position inside the liner and combined anteversion in different ways. Thus, focusing on cup orientation alone when assessing hip motion during different daily activities is inadequate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8197737PMC
http://dx.doi.org/10.1016/j.arth.2021.02.017DOI Listing

Publication Analysis

Top Keywords

hip motion
20
prosthetic head
12
stem anteversion
12
combined anteversion
8
inside acetabular
8
acetabular liner
8
cup stem
8
sitting sit-to-stand
8
bending forward
8
position inside
8

Similar Publications

Kinematic alignment is increasingly adopted in total knee arthroplasty (TKA) as a patient-specific strategy to restore native joint anatomy. However, its reliance on static radiographic measurements may not adequately reflect real-world functional biomechanics. This editorial underscores the importance of complementing static assessment with kinetic principles.

View Article and Find Full Text PDF

Purpose: Robotic-assisted total knee arthroplasty (RA-TKA), which is increasingly used to improve surgical precision, can face adoption difficulties due to a learning curve marked by longer operating times. The aim of this study was to evaluate the learning curve associated with the VELYS™ robot in five surgeons from the same centre with different annual arthroplasty volumes using navigated assistance with personalised alignment. The primary aim was to assess the learning curve for each surgeon.

View Article and Find Full Text PDF

Background: Total hip arthroplasty (THA) is a common intervention for severe hip disorders. However, postoperative instability and dislocation continue to present significant challenges. To address these issues, dual mobility (DM) cups and large femoral heads (LFH) have been employed, each offering unique biomechanical benefits.

View Article and Find Full Text PDF

Effect of forefoot strike and toe-out running on hip contact forces: A musculoskeletal modelling-based study.

J Biomech

September 2025

Human Movement Laboratory, School of Health Sciences, Western Sydney University, Campbelltown, NSW, Australia; Translational Health Research Institute, School of Health Sciences, Western Sydney University, Campbelltown, NSW, Australia.

Hip osteoarthritis (OA) is an increasingly significant public health concern, contributing to substantial economic and societal burden worldwide. Emerging evidence suggests that running may promote cartilage health through optimal joint loading. However, it remains unclear how modifications to running posture, such as altering footstrike patterns or adjusting foot progression angles, affect hip contact forces (HCF).

View Article and Find Full Text PDF

It is unknown how knee osteoarthritis pain affects joint power distribution while cycling. The study purposes were to (1) investigate if seat height, workload and any difference in hip or knee extensor strength affected asymmetry of hip, knee and ankle joint power during cycling; and (2) determine the relationship between knee osteoarthritis pain asymmetry and joint power asymmetry at the hips, knees, ankles and total leg. Asymmetry was the difference between dominant and non-dominant legs.

View Article and Find Full Text PDF