Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The spindle-assembly checkpoint facilitates mitotic fidelity by delaying anaphase onset in response to microtubule vacancy at kinetochores. Following microtubule attachment, kinetochores receive microtubule-derived force, which causes kinetochores to undergo repetitive cycles of deformation; this phenomenon is referred to as kinetochore stretching. The nature of the forces and the relevance relating this deformation are not well understood. Here, we show that kinetochore stretching occurs within a framework of single end-on attached kinetochores, irrespective of microtubule poleward pulling force. An experimental method to conditionally interfere with the stretching allowed us to determine that kinetochore stretching comprises an essential process of checkpoint silencing by promoting PP1 phosphatase recruitment after the establishment of end-on attachments and removal of the majority of checkpoint-activating kinase Mps1 from kinetochores. Remarkably, we found that a lower frequency of kinetochore stretching largely correlates with a prolonged metaphase in cancer cell lines with chromosomal instability. Perturbation of kinetochore stretching and checkpoint silencing in chromosomally stable cells produced anaphase bridges, which can be alleviated by reducing chromosome-loaded cohesin. These observations indicate that kinetochore stretching-mediated checkpoint silencing provides an unanticipated etiology underlying chromosomal instability and underscores the importance of a rapid metaphase-to-anaphase transition in sustaining mitotic fidelity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2021.01.062DOI Listing

Publication Analysis

Top Keywords

kinetochore stretching
20
checkpoint silencing
12
kinetochore stretching-mediated
8
spindle-assembly checkpoint
8
mitotic fidelity
8
chromosomal instability
8
kinetochore
7
stretching
6
checkpoint
5
kinetochores
5

Similar Publications

Bipolar spindle assembly and chromosome biorientation are prerequisites for chromosome segregation during cell division. The kinesin motor KIF11 (also widely known as Eg5) drives spindle bipolarization by sliding antiparallel microtubules bidirectionally, elongating a spherical spindle into a bipolar-shaped structure in acentrosomal oocytes. During meiosis I, this process stretches homologous chromosome pairs, establishing chromosome biorientation at the spindle equator.

View Article and Find Full Text PDF

Background: Centromeres play a vital role in ensuring accurate chromosome segregation during meiosis by serving as the foundation for kinetochore assembly and microtubule attachment. In oocytes, maintaining centromere integrity is particularly critical due to the extended arrest period prior to meiotic resumption. However, the molecular safeguards that preserve centromere structure and function throughout oocyte maturation remain poorly understood.

View Article and Find Full Text PDF

The chromatin of the centromere provides the assembly site for the mitotic kinetochore that couples microtubule attachment and force production to chromosome movement in mitosis. The chromatin of the centromere is specified by nucleosomes containing the histone H3 variant, CENP-A. The constitutive centromeric-associated network (CCAN) and kinetochore are assembled on CENP-A chromatin to enable chromosome separation.

View Article and Find Full Text PDF

Satellite DNA shapes dictate pericentromere packaging in female meiosis.

Nature

February 2025

Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

The abundance and sequence of satellite DNA at and around centromeres is evolving rapidly despite the highly conserved and essential process through which the centromere directs chromosome inheritance. The impact of such rapid evolution is unclear. Here we find that sequence-dependent DNA shape dictates packaging of pericentromeric satellites in female meiosis through a conserved DNA-shape-recognizing chromatin architectural protein, high mobility group AT-hook 1 (HMGA1).

View Article and Find Full Text PDF

The chromatin of the centromere provides the assembly site for the mitotic kinetochore that couples microtubule attachment and force production to chromosome movement in mitosis. The chromatin of the centromere is specified by nucleosomes containing the histone H3 variant CENP-A. The constitutive centromeric-associated network (CCAN) and kinetochore are assembled on CENP-A chromatin to enable chromosome separation.

View Article and Find Full Text PDF