98%
921
2 minutes
20
Detailed imaging of the three-dimensionally complex architecture of xylary plants is important for studying biological and mechanical functions of woody plants. Apart from common two-dimensional microscopy, X-ray micro-computed tomography has been established as a three-dimensional (3D) imaging method for studying the hydraulic function of wooden plants. However, this X-ray imaging method can barely reach the resolution needed to see the minute structures (e.g. pit membrane). To complement the xylem structure with 3D views at the nanoscale level, X-ray near-field nano-holotomography (NFH) was applied to analyze the wood species Pinus sylvestris and Fagus sylvatica. The demanded small specimens required focused ion beam (FIB) application. The FIB milling, however, influenced the image quality through gallium implantation on the cell-wall surfaces. The measurements indicated that NFH is appropriate for imaging wood at nanometric resolution. With a 26 nm voxel pitch, the structure of the cell-wall surface in Pinus sylvestris could be visualized in genuine detail. In wood of Fagus sylvatica, the structure of a pit pair, including the pit membrane, between two neighboring fibrous cells could be traced tomographically.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7907381 | PMC |
http://dx.doi.org/10.1038/s41598-021-83885-8 | DOI Listing |
J Thromb Thrombolysis
September 2025
Central Laboratory of Yongchuan Hospital, Chongqing Medical University, No. 439, Xuanhua Road, Yongchuan District, Chongqing, 402160, China.
In vitro assessment of the inhibitory effect of antiplatelet drugs on platelet aggregation is frequently employed to guide personalized antiplatelet therapy in clinical practice. However, existing methods for detecting platelet aggregation rely heavily on high concentrations of exogenous agonists, which may obscure part of the inhibitory effect of antiplatelet drugs and lead to an underestimation of their effects. This study validates a novel analytical strategy for evaluating the effects of antiplatelet drugs by quantifying the microscopic three-dimensional morphological parameters of platelet aggregates formed through spontaneous aggregation on a glass surface.
View Article and Find Full Text PDFNMR Biomed
October 2025
High-Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.
The human kidneys play a pivotal role in regulating blood pressure, water, and salt homeostasis, but assessment of renal function typically requires invasive methods. Deuterium metabolic imaging (DMI) is a novel, noninvasive technique for mapping tissue-specific uptake and metabolism of deuterium-labeled tracers. This study evaluates the feasibility of renal DMI at 7-Tesla (7T) to track deuterium-labeled tracers with high spatial and temporal resolution, aiming to establish a foundation for potential clinical applications in the noninvasive investigation of renal physiology and pathophysiology.
View Article and Find Full Text PDFAdv Mater
September 2025
Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK.
Hydrogen embrittlement (HE) poses a significant challenge to the durability of materials used in hydrogen production and utilization. Disentangling the competing nanoscale mechanisms driving HE often relies on simulations and electron-transparent sample techniques, limiting experimental insights into hydrogen-induced dislocation behavior in bulk materials. This study employs in situ Bragg coherent X-ray diffraction imaging to track three-dimensional (3D) dislocation and strain field evolution during hydrogen charging in a bulk grain of austenitic 316 stainless steel.
View Article and Find Full Text PDFJB JS Open Access
September 2025
Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Science, Niigata, Japan.
Background: Lower extremity alignment in knee osteoarthritis (OA) is conventionally assessed using standing radiographs. However, symptoms often manifest during gait. Understanding dynamic alignment during gait may help characterize disease progression and inform treatment strategies.
View Article and Find Full Text PDFCureus
August 2025
Medicine and Surgery, Peoples University of Medical and Health Sciences, Nawabshah, PAK.
The advancement of science and technology is an undeniable phenomenon that is progressively transforming all aspects of human life, including scientific, social, humanitarian, and environmental fields, among others. Facial reconstruction surgery has recently gained much attention owing to the incorporation of new technologies, such as bioprinting, regenerative medicine (RM), and artificial intelligence (AI) in surgery. These advancements have led to more innovative, site-specific, and optimal methods of addressing the challenges of facial reconstruction following trauma, congenital malformations, and oncological resections.
View Article and Find Full Text PDF