98%
921
2 minutes
20
Background: Pathogen reduction technology and enhanced bacterial culture screening promise to significantly reduce the risk of transfusion-associated septic reactions due to contaminated platelets. Recent reports suggest that these interventions lack efficacy for post-collection and processing contamination with environmental organisms if the storage bag integrity is compromised.
Case Report: We report a fatal septic transfusion reaction in a 63-year-old patient with chronic kidney and liver disease who received a pathogen reduced platelet transfusion in anticipation of surgery.
Methods: The residual platelet concentrate was cultured, with the detected microorganisms undergoing 16S genotype sequencing. Separate pathogen reduction studies were performed on the recovered bacteria, including assessment for amotosalen photoproducts. The storage container was subjected to pressure testing and microscopic examination. Environmental culture screening was performed at the hospital.
Results: Gram negative rods were detected in the platelet unit and cultures of both platelet component and the patient's blood grew Acinetobacter baumannii complex, Leclercia adecarboxylata and Staphylococcus saprophyticus. These strains were effectively inactivated with >7.2, 7.7, and >7.1 log kill, respectively. The platelet storage container revealed a leak visible only on pressure testing. Hospital environmental cultures were negative and the contamination source is unknown. A. baumannii complex and S. saprophyticus 16S genotyping sequences were identical to those implicated in a previously reported septic reaction.
Conclusion: Findings are compatible with post-processing environmental contamination of a pathogen reduced platelet concentrate via a non-visible, acquired storage container leak. Efforts are warranted to actively prevent damage to, and detect defects in, platelet storage containers, and to store and transport components in clean environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/trf.16210 | DOI Listing |
Sci Total Environ
September 2025
Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering, "Giulio Natta" - Piazza Leonardo da Vinci 32, 20133, Milano, Italy.
The outdoor storage of wood chips, used in biomass thermal power plants, may lead to different diffuse gaseous emissions. These emissions can contain different molecules, often with a non-negligible odour potential. Despite this need, these solid area sources are particularly complex to be characterised, due to their very high heterogeneity determined by a complex phenomenon of self-heating.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Collaborative Innovation Ce
Rainfall events significantly increase dissolved organic matter (DOM) and disinfection by-product (DBP) precursors in the reservoir, threatening water supply security. However, the vertical variations and ecological drivers of DBP precursors in the deepwater stratified reservoir during rainfall events remain poorly understood. This study investigated DOM composition, DBP precursors, nutrients, metals, and algae in the Sanhekou Reservoir under stormwater influence.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2025
School of Chemistry, Dalian University of Technology, Dalian 116024, PR China; College of Environment and Chemical Engineering, Dalian University, Dalian 116622, China. Electronic address:
Aqueous batteries have become a prospective future energy storage system because of their low coefficient of cost and stability. However, their lower energy density limits their applications. Ammonium ions (NH) have a small hydration radius and light molar mass, and aqueous ammonium ion batteries (AAIBs) are anticipated for solving the inherent low-energy density problem of aqueous batteries.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
School of Integrated Circuits, State Key Laboratory of New Textile Materials and Advanced Processing, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Huazhong University of Science and Technology, Wuhan, 430074, China.
Low-temperature rechargeable batteries face great challenges due to the sluggish reaction kinetics. Redox covalent organic frameworks (COFs) with porous structures provide a viable solution to accelerate the ionic diffusion and reaction kinetics at low temperatures. However, the applications of COFs in low-temperature batteries are still at their infancy stage.
View Article and Find Full Text PDFLangmuir
September 2025
School of Resources and Safety Engineering, Chongqing University, Chongqing 400044, China.
Hydrogen energy is pivotal for driving sustainable development and achieving deep decarbonization; yet, its storage remains a significant challenge. Notably, depleted methane reservoirs can serve as a promising large-scale solution for underground hydrogen storage (UHS). Based on adsorption experiments, Monte Carlo and molecular dynamics methods, the adsorption behavior of H and CH in anthracite and the applicability of five models were discussed.
View Article and Find Full Text PDF