Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background And Aims: Intestinal epithelial cells [IECs] from inflammatory bowel disease [IBD] patients exhibit an excessive induction of endoplasmic reticulum stress [ER stress] linked to altered intestinal barrier function and inflammation. Colonic tissues and the luminal content of IBD patients are also characterized by increased serine protease activity. The possible link between ER stress and serine protease activity in colitis-associated epithelial dysfunctions is unknown. We aimed to study the association between ER stress and serine protease activity in enterocytes and its impact on intestinal functions.

Methods: The impact of ER stress induced by Thapsigargin on serine protease secretion was studied using either human intestinal cell lines or organoids. Moreover, treating human intestinal cells with protease-activated receptor antagonists allowed us to investigate ER stress-resulting molecular mechanisms that induce proteolytic activity and alter intestinal epithelial cell biology.

Results: Colonic biopsies from IBD patients exhibited increased epithelial trypsin-like activity associated with elevated ER stress. Induction of ER stress in human intestinal epithelial cells displayed enhanced apical trypsin-like activity. ER stress-induced increased trypsin activity destabilized intestinal barrier function by increasing permeability and by controlling inflammatory mediators such as C-X-C chemokine ligand 8 [CXCL8]. The deleterious impact of ER stress-associated trypsin activity was specifically dependent on the activation of protease-activated receptors 2 and 4.

Conclusions: Excessive ER stress in IECs caused an increased release of trypsin activity that, in turn, altered intestinal barrier function, promoting the development of inflammatory process.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ecco-jcc/jjab035DOI Listing

Publication Analysis

Top Keywords

trypsin activity
16
serine protease
16
intestinal epithelial
12
intestinal barrier
12
barrier function
12
protease activity
12
human intestinal
12
activity
10
intestinal
9
endoplasmic reticulum
8

Similar Publications

An 8-week feeding trial was conducted to assess the effects of hydrolyzed feather meal (HFM) as a fish meal replacement on the growth performance, flesh quality, skin color, and intestinal microbiota of yellow catfish (). Five isonitrogen (44% crude protein) and isolipidic (8.5% crude lipid) diets were formulated with varying levels of HFM at 0% (FM, control), 2.

View Article and Find Full Text PDF

Argemone mexicana is one of the known herbaceous plants hosting bioactive isoquinoline alkaloids. In the current study, an endophytic fungal isolate was studied for anti-inflammatory potential and the identification of its bioactive molecule. An endophytic fungus AMEF-14 was obtained from this plant and identified as Cladosporium ramotenellum based on microscopy and molecular tools.

View Article and Find Full Text PDF

Reviewing the Developing Significance of the Serine Protease PRSS23.

Front Biosci (Landmark Ed)

August 2025

Institute of Genomic Medicine Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia.

The serine protease 23 (PRSS23) is a highly conserved member of trypsin-like serine proteases, which are associated with numerous essential processes, including digestion, blood coagulation, fibrinolysis, development, fertilization, apoptosis, and immunity. Original reports on PRSS23 unfolded not earlier than 2006 when a molecular biology study characterized and described PRSS23 as an ovarian protease. Then, in 2012, another important study was published linking PRSS23 with proliferation of breast cancer cells by an estrogen receptor 1 (ESR1)-dependent transcriptional activation of the serine protease.

View Article and Find Full Text PDF

Background: Bacillus thuringiensis Cry toxins are well known for their insecticidal properties, primarily through the formation of ion-leakage pores via α4-α5 hairpins. His178 in helix 4 of the Cry4Aa mosquito-active toxin has been suggested to play a crucial role in its biotoxicity.

Objective: This study aimed to investigate the functional importance of Cry4Aa-His178 through experimental and computational analyses.

View Article and Find Full Text PDF

Biochemical and thermodynamic effects of Hofmeister salts on β-trypsin proteoform.

Int J Biol Macromol

September 2025

Pos-Graduate Program of Biotechnology, Federal University of Espírito Santo, Vitória, ES, Brazil; Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, ES, Brazil; Pos-Graduate Program of Biochemistry, Federal University of Espírito Santo, Vitória, ES, Brazil; Po

Protein stability is profoundly influenced by the ionic environment, which impacts both structural conformation and catalytic function. In this study, we examined the effects of various Hofmeister salts on the biochemical, structural, and thermodynamic properties of the β-trypsin proteoform. We employed enzymatic assays, fluorescence spectroscopy, and differential scanning calorimetry (DSC) to evaluate how specific cations and anions modulate the enzyme's behavior.

View Article and Find Full Text PDF