Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sirtuin 1 (SIRT1), an NAD-dependent deacetylase, is a crucial regulator that produces multiple physiological benefits, such as the prevention of cancer and age-related diseases. SIRT1 is activated by sirtuin-activating compounds (STACs). Here, we report that quercetin 3,5,7,3',4'-pentamethyl ether (KPMF-8), a natural STAC from Thai black ginger Kaempferia parviflora, interacts with SIRT1 directly and stimulates SIRT1 activity by enhancing the binding affinity of SIRT1 with Ac-p53 peptide, a native substrate peptide without a fluorogenic moiety. The binding affinity between SIRT1 and Ac-p53 peptide was enhanced 8.2-fold by KPMF-8 but only 1.4-fold by resveratrol. The specific binding sites of KPMF-8 to SIRT1 were mainly localized to the helix2-turn-helix3 motif in the N-terminal domain of SIRT1. Intracellular deacetylase activity in MCF-7 cells was promoted 1.7-fold by KPMF-8 supplemented in the cell medium but only 1.2-fold by resveratrol. This work reveals that KPMF-8 activates SIRT1 more effectively than resveratrol does.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7896056PMC
http://dx.doi.org/10.1038/s42003-021-01705-1DOI Listing

Publication Analysis

Top Keywords

sirt1
10
quercetin 3573'4'-pentamethyl
8
3573'4'-pentamethyl ether
8
kaempferia parviflora
8
binding affinity
8
affinity sirt1
8
sirt1 ac-p53
8
ac-p53 peptide
8
kpmf-8
5
ether kaempferia
4

Similar Publications

SIRT1 modulation and lipid profile alterations in the cellular regulation of blood lipids in renal disorders among extremely obese individuals.

Cell Mol Biol (Noisy-le-grand)

September 2025

University Sousse, Faculty of Medicine "Ibn El-Jazzar", Department of Medical Genetics, Sousse, Tunisia.

The global epidemic of overweight and obesity is closely linked to the development of chronic kidney disease (CKD), with extremely obese individuals facing a particularly high risk. This study aimed to assess the relationship between lipid profile levels, SIRT1 expression, and RNA-34a-5P in the regulation of blood lipid levels among severely obese individuals with renal diseases. Conducted over six months in three specialized hospitals, the study included 100 participants divided into two groups: 50 obese individuals with renal diseases and 50 obese controls without renal problems.

View Article and Find Full Text PDF

Objectives: This study investigated the cardioprotective effects of stachydrine (STA) in lipopolysaccharide (LPS)-induced septic mice and H9c2 cardiomyocytes, focusing on its anti-apoptotic, anti-inflammatory, and anti-ferroptotic actions.

Methods: We established an LPS-induced sepsis model in mice and an LPS-stimulated H9c2 cardiomyocyte model in vitro.

Results: STA markedly reduced LPS-induced myocardial apoptosis, as demonstrated by decreased TUNEL-positive cells, and attenuated the elevation of serum cardiac injury markers, including creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), brain natriuretic peptide (BNP), cardiac troponin I (cTnI), and cardiac troponin T (cTnT) levels.

View Article and Find Full Text PDF

Hyperuricemia (HUA) is a prevalent metabolic disorder driven by dysregulated purine metabolism and impaired urate excretion, and robust animal models are critical for elucidating its pathophysiology and guiding therapy development. This review systematically examines chemically induced, gene-edited, environmental, exercise and microbiota-based HUA models across rodents, poultry, primates, zebrafish and silkworms, highlighting each model's strengths and limitations in mimicking human uric acid handling. We discuss how these models have validated standard urate-lowering treatments-such as xanthine oxidase inhibitors and uricosurics-and uncovered emerging therapeutic targets, including the gut-NLRP3 inflammasome axis and SIRT1-mediated ABCG2 regulation.

View Article and Find Full Text PDF

Corrole-based photosensitizers show great potential for tumor photodynamic therapy (PDT). While their photodynamic activity has been extensively studied at the cellular level, evaluation in mouse xenograft models remains challenging due to prolonged experimental timelines, complex drug administration, and high costs. To address these limitations, we developed a novel hepatocellular carcinoma model using wild-type AB zebrafish embryos as a xenograft platform.

View Article and Find Full Text PDF

Vascular aging is a major risk factor for cardiovascular diseases (CVDs) in the older individuals. Epigallocatechin-3-gallate (EGCG), the primary active compound in green tea, exhibits cardiovascular protective effects. However, its effect and the underlying mechanism of the same on vascular aging remain unclear.

View Article and Find Full Text PDF