98%
921
2 minutes
20
To provide novel insights into the pathogenesis of heart failure-induced renal dysfunction, we compared the effects of ACE inhibitor (ACEi) and AT receptor blocker (ARB) on systemic and kidney hemodynamics during heart failure in normotensive HanSD and hypertensive transgenic (TGR) rats. High-output heart failure was induced by creating an aorto-caval fistula (ACF). After five weeks, rats were either left untreated or treatment with ACEi or ARB was started for 15 weeks. Subsequently, echocardiographic, renal hemodynamic and biochemical measurements were assessed. Untreated ACF rats with ACF displayed significantly reduced renal blood flow (RBF) (HanSD: 8.9 ± 1.0 vs. 4.7 ± 1.6; TGR: 10.2 ± 1.9 vs. 5.9 ± 1.2 ml/min, both P < .001), ACEi had no major RBF effect, whereas ARB completely restored RBF (HanSD: 5.6 ± 1.1 vs. 9.0 ± 1.5; TGR: 7.0 ± 1.2 vs. 10.9 ± 1.9 ml/min, both P < .001). RBF reduction in untreated and ACEi-treated rats was accompanied by renal hypoxia as measured by renal lactate dehydrogenase activity, which was ameliorated with ARB treatment (HanSD: 40 ± 4 vs. 42 ± 3 vs. 29 ± 5; TGR: 88 ± 4 vs. 76 ± 4 vs. 58 ± 4 milliunits/mL, all P < .01). Unlike improvement seen in ARB-treated rats, ACE inhibition didn't affect urinary nitrates compared to untreated ACF TGR rats (50 ± 14 vs. 22 ± 13 vs. 30 ± 13 μmol/mmol Cr, both P < .05). ARB was more effective than ACEi in reducing elevated renal oxidative stress following ACF placement. A marker of ACEi efficacy, the angiotensin I/angiotensin II ratio, was more than ten times lower in renal tissue than in plasma. Our study shows that ARB treatment, in contrast to ACEi administration, prevents renal hypoperfusion and hypoxia in ACF rats with concomitant improvement in NO bioavailability and oxidative stress reduction. The inability of ACE inhibition to improve renal hypoperfusion in ACF rats may result from incomplete intrarenal RAS suppression in the face of depleted compensatory mechanisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7896062 | PMC |
http://dx.doi.org/10.1038/s41598-021-83906-6 | DOI Listing |
JCI Insight
September 2025
Department of Pharmacology, University of Michigan, Ann Arbor, United States of America.
Cardiac hypertrophy is a common adaptation to cardiovascular stress and often a prelude to heart failure. We examined how S-palmitoylation of the small GTPase, Ras-related C3 botulinum toxin substrate 1 (Rac1), impacts cardiomyocyte stress signaling. Mutation of the cysteine-178 palmitoylation site impaired activation of Rac1 when overexpressed in cardiomyocytes.
View Article and Find Full Text PDFApoptosis
September 2025
The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 182 Chunhui Road, Longmatan District, Luzhou, 646000, China.
Diabetic cardiomyopathy (DCM) is a severe cardiovascular complication of diabetes mellitus, characterized by pathological changes such as cardiomyocyte hypertrophy, necrosis, and myocardial fibrosis, which can ultimately lead to heart failure. However, its underlying mechanisms remain incompletely understood, limiting the development of effective therapeutic approaches. In recent years, the critical roles of oxidative stress and ferroptosis in the pathogenesis of DCM have attracted increasing attention.
View Article and Find Full Text PDFCardiovasc Interv Ther
September 2025
Division of Cardiovascular Medicine, Toyohashi Heart Center, Aichi, Japan.
The outcome of percutaneous coronary intervention (PCI) compared to coronary artery bypass grafting (CABG) is still controversial for patients with left main coronary artery (LMCA) disease. This multicenter cohort study aimed to evaluate the clinical outcomes of LMCA disease patients who underwent PCI or CABG. We reviewed 875 consecutive patients diagnosed with LMCA disease between January 2009 and December 2020 who underwent coronary revascularization by PCI (n = 404) or CABG (n = 471).
View Article and Find Full Text PDFJ Interv Card Electrophysiol
September 2025
Federal University of Minas Gerais, R. Alfredo Balena, 190, Santa Efigênia, Belo Horizonte, Brazil.
Background: Chagas heart disease (ChD) is a significant public health concern in Latin America, contributing to a high incidence of sudden cardiac death (SCD). Despite advances in heart failure treatment, management of Chagas cardiomyopathy has not progressed accordingly. While ICDs are effective for primary and secondary prevention in other conditions, patients with ChD often experience more frequent episodes of ventricular tachycardia, and ICD use may provide a negative impact and increase mortality.
View Article and Find Full Text PDFCurr Cardiol Rep
September 2025
Division of Cardiology, Health Sciences Building, University of Washington Medical Center, 1959 NE Pacific StreetSuite #A506D Box 356422, Seattle, WA, 98195, USA.
Purpose Of Review: Patients living with cancer are at risk for significant potential cardiovascular complications as a direct result of cancer treatment or due to underlying comorbid cardiovascular disease. This article reviews the methods of risk stratification as well as pharmacologic and nonpharmacologic approaches to cardioprotection in cardio-oncology.
Recent Findings: Several cancer-specific risk stratification tools have incorporated variables such as age, sex, cancer subtype, traditional cardiovascular risk factors and cancer treatment-related parameters to assess cardiovascular specific risk prior to cancer therapy.