Ultralong Room-Temperature Phosphorescence from Boric Acid.

Angew Chem Int Ed Engl

State Key Laboratory of Hydraulics and Mountain River Engineering, Analytical & Testing Center, Sichuan University, Chengdu, 610064, China.

Published: April 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

For a long time, phosphors with long-lived emission are dominated by rare earth/transition metal ion-doped sulfides and oxides. Recently, organic materials capable of emitting long-lived room-temperature phosphorescence (RTP) are reported, carbon skeletons are almost the exclusive structural feature of the conjugated luminophores. Herein, we reported that boric acid, a non-metal and C-free material, could emit RTP with lifetime up to 0.3 s. Detailed investigations indicated the weak conjugation between the n electrons of the O atoms in the B-O confined space was the possible origin of RTP. Similar RTP was also found in electron-rich N/F systems, namely, BN and BF (BF ). Importantly, the vacant orbital of B was found to contribute to the relevant unoccupied molecular orbitals involved in excitation, which is different from previous reports on phosphorescence from arylboronic acids. The results confirm the unique role of B as a versatile structure motif for construction of new RTP materials.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202101923DOI Listing

Publication Analysis

Top Keywords

room-temperature phosphorescence
8
boric acid
8
rtp
5
ultralong room-temperature
4
phosphorescence boric
4
acid long
4
long time
4
time phosphors
4
phosphors long-lived
4
long-lived emission
4

Similar Publications

Purely organic materials showing efficient and persistent emission via room temperature phosphorescence (RTP) allow the design of minimalistic yet powerful technological solutions for sensing, bioimaging, information storage, and safety applications using the photonic design principle of digital luminescence. Although several promising materials exist, a deep understanding of the underlying structure-property relationship and, thus, development of rational design strategies are widely missing. Some of the best purely organic emitters follow the donor-acceptor-donor design motif.

View Article and Find Full Text PDF

Scalable Solvent-Free Synthesis of a Linear Heteroaromatic Trimer with Crystallization-Induced Phosphorescence.

Org Lett

September 2025

Guangdong Basic Research Center of Excellence for Aggregate Science, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.

The polymerization mechanism and the identification of key oligomer intermediates during the thermal condensation of benzoguanamine (BG) remain unclear. Herein, we report a novel mixed thermal condensation strategy using BG and a pre-synthesized dimer to selectively synthesize the trimer (BG) with a significantly enhanced yield. Comprehensive characterization techniques confirm the formation of a linear molecular structure for (BG).

View Article and Find Full Text PDF

Cyclization-enhanced photoactivatable reversible room-temperature phosphorescence for efficient real-time light printing.

Chem Sci

August 2025

State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 Jianshe Road Xinxiang 453007 China +86

The construction of polymer-based photoactivated room-temperature phosphorescence systems remains a prominent research focus, yet the development of ultrafast activated systems under ambient conditions continues to pose a challenge. In this study, cyclized phenothiazine derivatives bearing diverse substituents are synthesized and incorporated into an amorphous polyvinyl alcohol (PVA) matrix, resulting in significantly enhanced dynamic photoactivation characteristics compared with those of their pristine monomeric counterparts. Under ambient conditions and 2 s irradiation, the lifetime and quantum yield of C[4]PTZ-OH@PVA increase by factors of 1.

View Article and Find Full Text PDF

The coordination chemistry of the planar, doubly π-extended bipyridine analog, 6,6',7,7'-biphenanthridine (p-biphe), is presented. The phenanthridine units in p-biphe are fused together at the 6- and 7- positions, and the resulting rigid ligand is compared with the more flexible parent "biphe" fused only at the 6-positions. p-Biphe is intensely fluorescent in solution with a much higher quantum yield, but, unlike biphe, at 77 K the fluorescence is not accompanied by any significant phosphorescence.

View Article and Find Full Text PDF

BN-fused aromatic compounds have garnered significant attention due to their unique electronic structures and exceptional photophysical properties, positioning them as highly promising candidates for applications in organic optoelectronics. However, the regioselective synthesis of BN isomers remains a formidable challenge, primarily stemming from the difficulty in precisely controlling reaction sites, limiting structural diversity and property tunability. Herein, we propose a regioselective synthetic strategy that employs 2,1-BN-naphthalene derivatives, wherein selective activation of N-H and C-H bonds is achieved in conjunction with -halogenated phenylboronic acids.

View Article and Find Full Text PDF