98%
921
2 minutes
20
Background: Image quality and quantitative accuracy of positron emission tomography (PET) depend on several factors such as uptake time, scanner characteristics and image reconstruction methods. Ordered subset expectation maximization (OSEM) is considered the gold standard for image reconstruction. Penalized-likelihood estimation (PL) algorithms have been recently developed for PET reconstruction to improve quantitation accuracy while maintaining or even improving image quality. In PL algorithms, a regularization parameter β controls the penalization of relative differences between neighboring pixels and determines image characteristics. In the present study, we aim to compare the performance of Q.Clear (PL algorithm, GE Healthcare) and OSEM (3 iterations, 8 subsets, 6-mm post-processing filter) for Ga-DOTATATE (Ga-DOTA) PET studies, both visually and quantitatively. Thirty consecutive whole-body Ga-DOTA studies were included. The data were acquired in list mode and were reconstructed using 3D OSEM and Q.Clear with various values of β and various acquisition times per bed position (bp), thus generating images with reduced injected dose (1.5 min/bp: β = 300-1100; 1.0 min/bp: β = 600-1400 and 0.5 min/bp: β = 800-2200). An additional analysis adding β values up to 1500, 1700 and 3000 for 1.5, 1.0 and 0.5 min/bp, respectively, was performed for a random sample of 8 studies. Evaluation was performed using a phantom and clinical data. Two experienced nuclear medicine physicians blinded to the variables assessed the image quality visually.
Results: Clinical images reconstructed with Q.Clear, set at 1.5, 1.0 and 0.5 min/bp using β = 1100, 1300 and 3000, respectively, resulted in images with noise equivalence to 3D OSEM (1.5 min/bp) with a mean increase in SUV of 14%, 13% and 4%, an increase in SNR of 30%, 24% and 10%, and an increase in SBR of 13%, 13% and 2%. Visual assessment yielded similar results for β values of 1100-1400 and 1300-1600 for 1.5 and 1.0 min/bp, respectively, although for 0.5 min/bp there was no significant improvement compared to OSEM.
Conclusion: Ga-DOTA reconstructions with Q.Clear, 1.5 and 1.0 min/bp, resulted in increased tumor SUV and in improved SNR and SBR at a similar level of noise compared to 3D OSEM. Q.Clear with β = 1300-1600 enables one-third reduction of acquisition time or injected dose, with similar image quality compared to 3D OSEM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7881076 | PMC |
http://dx.doi.org/10.1186/s40658-021-00359-6 | DOI Listing |
J Appl Clin Med Phys
September 2025
Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia, USA.
Purpose: Real‑time magnetic resonance-guided radiation therapy (MRgRT) integrates MRI with a linear accelerator (Linac) for gating and adaptive radiotherapy, which requires robust image‑quality assurance over a large field of view (FOV). Specialized phantoms capable of accommodating this extensive FOV are therefore essential. This study compares the performance of four commercial MRI phantoms on a 0.
View Article and Find Full Text PDFJ Appl Clin Med Phys
September 2025
Clinical Imaging Physics Group, Duke University Health System, Durham, North Carolina, USA.
Introduction: Medical physicists play a critical role in ensuring image quality and patient safety, but their routine evaluations are limited in scope and frequency compared to the breadth of clinical imaging practices. An electronic radiologist feedback system can augment medical physics oversight for quality improvement. This work presents a novel quality feedback system integrated into the Epic electronic medical record (EMR) at a university hospital system, designed to facilitate feedback from radiologists to medical physicists and technologist leaders.
View Article and Find Full Text PDFJ Appl Clin Med Phys
September 2025
Department of Radiation Oncology, University of Utah, Salt Lake City, Utah, USA.
Purpose: The development of on-board cone-beam computed tomography (CBCT) has led to improved target localization and evaluation of patient anatomical change throughout the course of radiation therapy. HyperSight, a newly developed on-board CBCT platform by Varian, has been shown to improve image quality and HU fidelity relative to conventional CBCT. The purpose of this study is to benchmark the dose calculation accuracy of Varian's HyperSight cone-beam computed tomography (CBCT) on the Halcyon platform relative to fan-beam CT-based dose calculations and to perform end-to-end testing of HyperSight CBCT-only based treatment planning.
View Article and Find Full Text PDFEur Radiol Exp
September 2025
Center for MR-Research, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland.
Background: Fetal MRI is increasingly used to investigate fetal lung pathologies, and super-resolution (SR) algorithms could be a powerful clinical tool for this assessment. Our goal was to investigate whether SR reconstructions result in an improved agreement in lung volume measurements determined by different raters, also known as inter-rater reliability.
Materials And Methods: In this single-center retrospective study, fetal lung volumes calculated from both SR reconstructions and the original images were analyzed.
Radiother Oncol
September 2025
Dept of Radiation Oncology, Centre Léon Bérard, Lyon, France. Electronic address:
Background And Purpose: To date, no consensus guidelines have been published that systematically guide delineation of primary and nodal Clinical Target Volumes (CTVs) in patients who require post-operative radiotherapy (PORT) for mucosal Head and Neck squamous cell carcinoma (HNSCC). As a result, significant individual, institutional and national variation exists in the way that CTVs are delineated in the post-operative setting, leading to considerable heterogeneity in radiotherapy treatment.
Methods: A multi-disciplinary group of experts convened by the European Society for Radiotherapy and Oncology (ESTRO) set-out principles for the multi-disciplinary management of oral cavity squamous cell carcinoma (OCSCC).