98%
921
2 minutes
20
Solution-processed organometal halide perovskites (OMHPs) have been widely used in optoelectronic devices, and have exhibited brilliant performance. One of their generally recognized advantages is their easy fabrication procedure. However, such a procedure also brings uncertainty about the opto-electric properties of the final samples and devices, including morphology, stability, coverage ratio, and defect concentration. Normally, one needs to find a balanced condition, because there is a competitive relation between these parameters. In this work, we fabricated CHNHPbI films by carefully changing the ratio of the PbI to CHNHI, and found that the stoichiometric and solvent engineering not only determined the photoluminescence efficiency and defects in the materials, but also affected the photostability, morphology, and coverage ratio. Combining solvent engineering and the substitution of PbI by Pb(Ac), we obtained an optimized fabrication condition, providing uniform CHNHPbI films with both high photoluminescence efficiency and high photostability under either I-rich or Pb-rich conditions. These results provide an optimized fabrication procedure for CHNHPbI and other OMHP films, which is crucial for the performance of perovskite-based solar cells and light emitting devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7915270 | PMC |
http://dx.doi.org/10.3390/nano11020405 | DOI Listing |
J Phys Chem Lett
September 2025
Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
Ether-based electrolytes are widely acknowledged for their potential to form stable solid electrolyte interfaces (SEIs) for stable anode performance. However, conventional ether-based electrolytes have shown a tendency for cation-solvent co-intercalation phenomena on graphite electrodes, resulting in lower capacity and higher voltage platforms compared to those of neat cation insertion in ester-based electrolytes. In response, we propose the development of weakly solvating ether solvents to weaken the interaction between cations and solvents, thereby suppressing co-intercalation behavior.
View Article and Find Full Text PDFOrg Lett
September 2025
Guangdong Basic Research Center of Excellence for Aggregate Science, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
The polymerization mechanism and the identification of key oligomer intermediates during the thermal condensation of benzoguanamine (BG) remain unclear. Herein, we report a novel mixed thermal condensation strategy using BG and a pre-synthesized dimer to selectively synthesize the trimer (BG) with a significantly enhanced yield. Comprehensive characterization techniques confirm the formation of a linear molecular structure for (BG).
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China.
Decades of antibiotic misuse have spurred an antimicrobial resistance crisis, creating an urgent demand for alternative treatment options. Although phototherapy has therapeutic potential, the efficacy of the most advanced photosensitizers (PS) is essentially limited by aggregation-induced quenching, which significantly reduces their therapeutic effect. To address these challenges, we developed a cationic metallocovalent organic framework (CRuP-COF) via a solvent-mediated dual-reaction synthesis strategy.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Department of Computational Biology, Indraprastha Institute of Information Technology Delhi (IIIT-Delhi), Okhla Phase III, New Delhi, 110020, India; Infosys Centre for Artificial Intelligence, Indraprastha Institute of Information Technology Delhi (IIIT-Delhi), Okhla Phase III, New Delhi, 110020, In
Understanding the structural and functional diversity of toxin proteins is critical for elucidating macromolecular behavior, mechanistic variability, and structure-driven bioactivity. Traditional approaches have primarily focused on binary toxicity prediction, offering limited resolution into distinct modes of action of toxins. Here, we present MultiTox, an ensemble stacking framework for the classification of toxin proteins based on their molecular mode of action: neurotoxins, cytotoxins, hemotoxins, and enterotoxins.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China. Electronic address:
Developing high-performance wearable flexible sensors that can adapt well to complex environments has become a hotspot. Herein, a polyvinyl alcohol based composite hydrogel sensor with high mechanical strength, desirable frost/swelling resistance, and highly sensitive sensing performance was proposed by a multi-component collaborative design strategy. Meanwhile, an intelligent gesture recognition system was established by combining machine learning algorithm.
View Article and Find Full Text PDF